
iv

MAINVIEW® AutoOPERATOR™

Advanced Automation Guide

Version 6.3

March 31, 2003

Copyright 2003 BMC Software, Inc., as an unpublished work. All rights reserved.

BMC Software, the BMC Software logos, and all other BMC Software product or service names are registered trademarks
or trademarks of BMC Software, Inc. All other registered trademarks or trademarks belong to their respective companies.

THE USE AND CONTENTS OF THIS DOCUMENTATION ARE GOVERNED BY THE SOFTWARE LICENSE
AGREEMENT ENCLOSED AT THE BACK OF THIS DOCUMENTATION.

Restricted Rights Legend

U.S. GOVERNMENT RESTRICTED RIGHTS. UNPUBLISHED -- RIGHTS RESERVED UNDER THE COPYRIGHT
LAWS OF THE UNITED STATES. Use, duplication, or disclosure by the U.S. Government is subject to restrictions set
forth in FAR Section 52.227-14 Alt. III (g)(3), FAR Section 52.227-19, DFARS 252.227-7014 (b) or DFARS 227.7202, as
amended from time to time. Contractor/Manufacturer is BMC Software, Inc., 2101 CityWest Blvd., Houston, TX
77042-2827, USA. Any contract notices should be sent to this address.
Contacting BMC Software

You can access the BMC Software Web site at http://www.bmc.com. From this Web site, you can obtain information
about the company, its products, corporate offices, special events, and career opportunities.

United States and Canada Outside United States and Canada

Address BMC Software, Inc.
2101 CityWest Blvd.
Houston TX 77042-2827

Telephone

Fax

(01) 713 918 8800

(01) 713 918 8000

Telephone 713 918 8800 or
800 841 2031

Fax 713 918 8000

http://www.bmc.com

Customer Support

You can obtain technical support by using the Support page on the BMC Software Web site or by contacting Customer
Support by telephone or e-mail. To expedite your inquiry, please see “Before Contacting BMC Software.”

Support Web Site

You can obtain technical support from BMC Software 24 hours a day, 7 days a week at http://www.bmc.com/support.html.
From this Web site, you can

• read overviews about support services and programs that BMC Software offers
• find the most current information about BMC Software products
• search a database for problems similar to yours and possible solutions
• order or download product documentation
• report a problem or ask a question
• subscribe to receive e-mail notices when new product versions are released
• find worldwide BMC Software support center locations and contact information, including e-mail addresses, fax

numbers, and telephone numbers

Support by Telephone or E-mail

In the United States and Canada, if you need technical support and do not have access to the Web, call 800 537 1813.
Outside the United States and Canada, please contact your local support center for assistance. To find telephone and e-mail
contact information for the BMC Software support center that services your location, refer to the Contact Customer Support
section of the Support page on the BMC Software Web site at www.bmc.com/support.html.

Before Contacting BMC Software

Before you contact BMC Software, have the following information available so that Customer Support can begin working
on your problem immediately:

• product information

— product name
— product version (release number)
— license number and password (trial or permanent)

• operating system and environment information

— machine type
— operating system type, version, and service pack or other maintenance level such as PUT or PTF
— system hardware configuration
— serial numbers
— related software (database, application, and communication) including type, version, and service pack or

maintenance level

• sequence of events leading to the problem

• commands and options that you used

• messages received (and the time and date that you received them)

— product error messages
— messages from the operating system, such as file system full
— messages from related software
 iii

http://www.bmc.com/support.html

iv MAINVIEW AutoOPERATOR Advanced Automation Guide

Contents

About This Book . xix

Chapter 1 Introduction to Using AutoOPERATOR and EXECs to Automate
Your Environment

Overview. 1-2
Choosing the EXEC Language: REXX or CLIST 1-3
Invoking AutoOPERATOR EXECs . 1-3
Passing Information to REXX EXECs . 1-5
Controlling EXEC Execution . 1-8
Using Variables in AutoOPERATOR EXECs . 1-8

Chapter 2 Using REXX Conventions and Syntax in AutoOPERATOR REXX
EXECs

Using Expressions and Operators in REXX EXECs 2-1
Using Control Statements in REXX EXECs . 2-2
Using Assignment Statements in REXX EXECs 2-3
Using Conditional Statements in REXX EXECs 2-3
Using Built-in Functions in REXX EXECs . 2-4
Using TSO/E Functions for REXX EXECs . 2-6
Using TSO/E REXX Commands in REXX EXECs. 2-7
Restrictions in REXX EXECs . 2-8

Chapter 3 Passing Parameters to REXX EXECs in AutoOPERATOR
Understanding the Four Components of a REXX EXEC. 3-1

Defining the Language . 3-2
Passing Data . 3-2
Documenting REXX EXECs . 3-5
Writing the Logic Section . 3-6

Describing AutoOPERATOR REXX EXECs . 3-7
Rule-Initiated REXX EXECs . 3-7

Potential Use . 3-7
Parameters Passed to the EXEC . 3-7
Example . 3-8
Describing the Example . 3-9
BMC Software, Inc., Confidential and Proprietary Information

 Contents v

ALERT-Initiated REXX EXECs . 3-9
Potential Use . 3-10
Parameters Passed to the EXEC . 3-10
Example 1: ALERT-Initiated EXEC without

Optional Parameters . 3-11
Describing the Example . 3-12
Example 2: ALERT-Initiated EXEC with Optional Parameters 3-13
Describing the Example . 3-14

User-Initiated REXX EXECs . 3-14
Potential Use . 3-14
Parameters Passed to the EXEC . 3-14
Example . 3-15
Describing the Example . 3-15

Time-Initiated REXX EXECs . 3-16
Potential Use . 3-16
Parameters Passed to the EXEC . 3-16
Example . 3-18
Describing the Example . 3-19

EXEC-Initiated REXX EXECs . 3-19
Potential Use . 3-19
Parameters Passed to the EXEC . 3-20
Example . 3-20
Describing the Example . 3-21

Externally Initiated REXX EXECs . 3-22
Potential Use . 3-22
Parameters Passed to the EXEC . 3-23
Example . 3-23
Describing the Example . 3-24

End-of-Memory-Initiated REXX EXEC . 3-24
Potential Use . 3-24
Parameters Passed to the EXEC . 3-25
Example . 3-25

Chapter 4 Using Variables in REXX EXECs
Overview . 4-1
Using a TSO Variable Pool . 4-6

TSO Variables Supplied by AutoOPERATOR 4-7
TSO Modifiable Control Variables (REXX EXECs) 4-13
TSO Modifiable Control Variables (CLIST EXECs) 4-14
TSO Non-Modifiable Control Variables (REXX EXECs) 4-15
TSO Non-Modifiable Control Variables (CLIST EXECs) 4-16

Using LOCAL Variables and Pools. 4-17
Using SHARED Variables and Pools . 4-18

Serializing Variables . 4-19
AutoOPERATOR-Supplied SHARED Variables 4-19

Using the PROFILE Pool . 4-21
Serializing Variables . 4-22

Saving Data in a Variable Pool . 4-23
BMC Software, Inc., Confidential and Proprietary Information

vi MAINVIEW AutoOPERATOR Advanced Automation Guide

Potential Use . 4-23
Describing the Example . 4-23
Example . 4-24

Retrieving Data from a Variable Pool. 4-25
Potential Use . 4-25
Describing the Example . 4-25
Example . 4-26

Sharing Variables while Multi-Threading EXECs 4-27
Potential Use . 4-27
Describing the Example . 4-27
Example . 4-28

Rule-Initiated EXECs Initiated by MVS Multi-Line or
Multi-Segment Messages . 4-29

Potential Use . 4-29
Describing the Example . 4-29
Example . 4-30

Chapter 5 Controlling EXEC Execution
Scheduling EXECs . 5-1

Defining Threads . 5-2
Scheduling EXECs to the Normal Queue . 5-2
Scheduling EXECs to the Priority Queue . 5-2
Multi-Threading EXECs to the Normal or Priority Queue 5-4

Invoking EXECs Synchronously with IMFEXEC SELECT
(EXEC) WAIT(YES). 5-8

Implementing an EXEC . 5-9
Controlling EXEC Execution . 5-10

Setting Time and CPU Limits for EXECs . 5-10
Displaying EXEC Execution Status . 5-11
Canceling, Stopping, and Starting EXEC Execution 5-12

Analyzing EXEC Performance with the EXEC
Management Application . 5-13

Using the SORT Command in the EXEC
Management Application . 5-14

Writing EXECs that Display CPU Consumption 5-15

Chapter 6 Using Advanced Techniques with AutoOPERATOR EXECs
Overview. 6-1
Scheduling Messages and EXECs across BBI-SS PASs 6-2

Examples . 6-3
Determining the Origin of a Command or EXEC 6-7

Example - Determining the Origin of a User-Initiated EXEC 6-8
Invoking REXX EXECs from Outside of AutoOPERATOR with

IMFSUBEX. 6-9
Determining Return Codes from IMFSUBEX 6-11
Submission from a Job Step . 6-13
Submission from a TSO Session . 6-14
Submission from within Another Program . 6-15
BMC Software, Inc., Confidential and Proprietary Information

 Contents vii

Testing EXECs . 6-16
Testing EXECs with IMFEXEC CNTL NOCMD Statements 6-16
Testing an EXEC with REXX Statement TRACE R 6-18
Testing EXECs with TSO CLIST Statement CONTROL

CONLIST SYMLIST . 6-19
Testing EXECs with SHARED Variables . 6-20
Testing EXECs without Issuing WTOs . 6-21

REXX EXEC Considerations . 6-21
Minimizing EXEC Processing Time . 6-22

Using VLF to Improve Performance . 6-24

Chapter 7 Accessing DB2 from AutoOPERATOR
Accessing DB2 from REXX EXECs with RxD2/LINK. 7-1
RxD2/LINK Common Functions for REXX EXECs 7-2
RxD2/LINK Special Functions for REXX EXECs. 7-3

Chapter 8 Interacting with VTAM Applications with OSPI
Overview . 8-1
When to Use OSPI . 8-2
How to Use OSPI . 8-2
Customization Required to Use OSPI . 8-3
OSPI Sessions . 8-3

Establishing a Session . 8-3
Exchanging Data . 8-4
Terminating a Session . 8-4

OSPI Scripting Application. 8-5
Accessing the OSPI Scripting Application . 8-5
OSPI Script Development Panel . 8-6
Interacting with the Application . 8-8
Receive Complete Detection. 8-11
Retrieving Screen Data into Variables . 8-12
Terminating the Application . 8-13

Customizing OSPI EXECs . 8-14
OSPI Control Variables. 8-15
Disconnect/Reconnect Feature . 8-16
Establishing Multiple Sessions . 8-17
Using Passwords in OSPI EXECs . 8-17

OSPI Debugging Facilities . 8-17
Return Codes. 8-17
Error Messages . 8-18
OSPI Control Variables. 8-18
OSPISNAP . 8-18
OSPI Session Termination Panel . 8-19

Chapter 9 Performing Automation Using AOAnywhere
Overview . 9-1

Sysplex Support . 9-2
Why Use AOAnywhere . 9-2
BMC Software, Inc., Confidential and Proprietary Information

viii MAINVIEW AutoOPERATOR Advanced Automation Guide

Installation Requirements . 9-3
API Implementation under REXX and CLIST. 9-4

Differences between IMFEXEC and AOEXEC
Parameter Syntax . 9-4

Implementing the AOAnywhere Batch Interface: AOSUBX 9-8
Why Use AOSUBX . 9-8

AOEXEC Commands . 9-11
General Coding Conventions . 9-11
Using Variable Names . 9-12
Reading Return Codes . 9-12
Understanding Command Statement Syntax 9-13

AOEXEC ALERT. 9-14
Return Codes for FUNCTION Keywords . 9-20
TSO Variables Returned from the READQ Parameter 9-27
TSO Variables Returned from COUNT . 9-28
TSO Variables Returned from LISTQ . 9-28

AOEXEC MSG. 9-40
AOEXEC NOTIFY. 9-42
AOEXEC SELECT. 9-44
AOEXEC SYSINFO. 9-47
AOEXEC VDEL. 9-51
AOEXEC VGET. 9-54
AOEXEC VLST . 9-56
AOEXEC VPUT . 9-59
AOEXEC VDELL . 9-62
AOEXEC VGETL . 9-64
AOEXEC VLSTL . 9-66
AOEXEC VPUTL. 9-69

Chapter 10 Accessing Array Data with AutoOPERATOR EXECs
Overview. 10-1

When Are Arrays Useful . 10-1
IMFEXEC ARRAY Commands . 10-4

General Coding Conventions . 10-4
Using Variable Names . 10-5
Reading Condition Codes. 10-5

ARRAY CONNECT. 10-6
ARRAY CREATE. 10-9
ARRAY DELETE. 10-11
ARRAY DISC. 10-13
ARRAY FIND . 10-15
ARRAY GET . 10-18
ARRAY INFO . 10-20
ARRAY INSERT . 10-23
ARRAY LIST . 10-25
ARRAY PUT . 10-27
ARRAY SAVE . 10-29
ARRAY SET. 10-31
BMC Software, Inc., Confidential and Proprietary Information

 Contents ix

ARRAY SETVIEW. 10-33
ARRAY SORT . 10-36

Chapter 11 Using the MAINVIEW API
Overview . 11-1

What Is the MAINVIEW API . 11-2
Customizing MAINVIEW Views and Connecting

 BBI-SS PAS to a CAS . 11-2
Using the IMFEXEC MAINVIEW Commands 11-5

IMFEXEC MAINVIEW CONNECT. 11-5
IMFEXEC MAINVIEW CONTEXT . 11-6
IMFEXEC MAINVIEW VIEW . 11-6
IMFEXEC MAINVIEW GETDATA . 11-6

General Coding Conventions. 11-8
Using Variable Names . 11-8
Reading Condition Codes . 11-8

MAINVIEW CONNECT . 11-10
MAINVIEW CONTEXT . 11-12
MAINVIEW GETDATA . 11-14
MAINVIEW RELEASE . 11-17
MAINVIEW TRACE . 11-18
MAINVIEW VIEW . 11-19
Sample Program . 11-22

Chapter 12 Using the IMFEXEC Statements
General Coding Conventions. 12-3

REXX Coding. 12-3
Using Quotation Marks. 12-4
Using Variable Names . 12-4
Reading Condition Codes . 12-4

ALERT . 12-6
FUNCTION Keywords . 12-12
TSO Variables Returned from the READQ Parameter. 12-19
TSO Variables Returned from COUNT . 12-20
TSO Variables Returned from LISTQ . 12-20

BKPT. 12-32
CHAP . 12-33
CICS . 12-34

Condition Codes . 12-35
CICS Command Parameters . 12-36
CICS ACQUIRE. 12-38
CICS ALLOC . 12-40
CICS ALTER . 12-41
CICS ALTERVS . 12-48
CICS CEMT . 12-49
CICS CHAP . 12-51
CICS CICSKEY . 12-52
CICS CLOSE . 12-53
BMC Software, Inc., Confidential and Proprietary Information

x MAINVIEW AutoOPERATOR Advanced Automation Guide

CICS CONN. 12-54
CICS DISABLE . 12-55
CICS DROP . 12-57
CICS DUMPDB. 12-58
CICS ENABLE . 12-59
CICS FREE . 12-61
CICS INSERVE . 12-62
CICS ISOLATE . 12-63
CICS KILL. 12-64
CICS LOAD . 12-67
CICS NEWCOPY . 12-68
CICS OPEN . 12-69
CICS OUTSERVE . 12-70
CICS PURGE. 12-71
CICS QUERY . 12-73
CICS RECOVERDB . 12-79
CICS RELEASE . 12-80
CICS SPURGE. 12-81
CICS STARTDB . 12-82
CICS STOPDB. 12-83
CICSTRAN . 12-84

CMD . 12-85
CMD (Issue BBI Command without Response) 12-86
CMD (Issue BBI Command with Response) 12-87
CMD (Issue MVS Commands) . 12-90
CMD (Issue IMS Command without Response) 12-96
CMD (Issue IMS Command with Response). 12-99

CNTL . 12-103
DOM . 12-105
EXIT . 12-107
HB. 12-108
IMFC. 12-109
IMFC SET PRG=CALLX | ALL . 12-113
IMFC SET REQ=CALLX . 12-115
IMSTRAN . 12-117
JES3CMD . 12-119
JESALLOC. 12-120
JESSUBM. 12-122
LOGOFF. 12-125
LOGON . 12-127
MSG . 12-129
NOTIFY . 12-130
POST. 12-131
RECEIVE . 12-133
RES . 12-134
SCAN . 12-136

Using Parameters . 12-137
SELECT . 12-140
BMC Software, Inc., Confidential and Proprietary Information

 Contents xi

Using Other Programming Languages . 12-141
Understanding Completion Codes for EXEC-Initiated

EXECs with WAIT(YES) and User-Written Programs. 12-143
SEND. 12-144
SESSINF . 12-146
SETTGT . 12-148
SHARE . 12-150
STDTIME . 12-153
SUBMIT . 12-155
TAILOR . 12-157

Condition Codes . 12-159
IMFEXEC TAILOR Processing . 12-160
Variable Substitution. 12-161
Examples of Variable Substitution . 12-163

TRANSMIT. 12-171
TYPE. 12-173
VCKP . 12-175
VDCL . 12-177
VDEL . 12-179
VDELL . 12-182
VDEQ . 12-184
VENQ . 12-185
VGET . 12-187
VGETL . 12-191
VLST. 12-193
VLSTL. 12-195
VPUT. 12-197
VPUTL . 12-201
WAIT . 12-203
WAITLIST. 12-205
WTO . 12-208
WTOR . 12-210

Chapter 13 Testing and Debugging EXECs Interactively
What AutoOPERATOR EXECs Are . 13-2
What the EXEC Testing Facility Provides . 13-2

Overview . 13-2
What Breakpoints Are . 13-3
Division of Breakpoints . 13-3
How to Use Variables . 13-5
How to Use the EXEC Testing Facility with OSPI EXECs 13-5
How to Use the IMFEXEC BKPT Statement. 13-6
How to Trace the Execution of the EXEC . 13-6
What to Set Up before Using the EXEC Testing Facility 13-7

Accessing the EXEC Testing Facility . 13-7
Displaying Interpreted Source Statements . 13-12
Tracing Interpreted Source Statements . 13-14
Setting Conditional Breakpoints . 13-14
BMC Software, Inc., Confidential and Proprietary Information

xii MAINVIEW AutoOPERATOR Advanced Automation Guide

Displaying Variables . 13-17
Creating and Modifying Variables . 13-19
Testing OSPI Sessions . 13-21

Chapter 14 Using the AutoOPERATOR-Supplied Utility EXECs
Distributed Utility EXECs . 14-2

SYSPROG Utility EXECs . 14-3
How to Resolve Compound SYSPROG Variables 14-4

@STATASK: Start Tasks. 14-4
CANEXEC: Cancel Delvars . 14-5
DELVARS: Delete Variables . 14-5
MUT001C: Issue $E, $P, and $C Commands 14-6
SUBMIT: Find Subsystem Handling Job Submissions 14-7
SUBMITOR: Submit Jobs on the Target Subsystem 14-8
RASM: Auxiliary Storage Manager Information 14-8
RCPU: CPU Usage Information . 14-10
RCSS: Common Storage Usage Information 14-11
RENQ: SYSPROG ENQUEUE Command. 14-12
RIO: System Input/Output Information . 14-13
RMDE: Device Monitoring. 14-14
RMON: Address Space Monitoring . 14-15
RMPA: Channel Path Monitoring . 14-16
RMTP: Monitor Pending Mounts . 14-17
RPAG: System Wide Paging Information . 14-18
RPRO: Monitor Progress of an Address Space. 14-19
RREP: Retrieve WTOR IDs . 14-20
RREPRX: Retrieve WTOR IDs . 14-21
RRES: Retrieve Outstanding Reserves . 14-23
RRSM: Real Storage Management Information 14-24
RSPA: Retrieve DASD Space Information 14-25
RSTA: Retrieve Status of an Address Space 14-28
RSYS: System Dump Data Sets Information 14-30
RTPI: Teleprocessing Input/Output Information. 14-30
RTSU: Information about TSO Users . 14-32
@TIMER: Interface to Timer Queues. 14-33
JES2DI: Retrieve Initiator Information. 14-36
JES2DQ: Retrieve Execution Queue Information. 14-37
CNVSECS: Convert HH:MM:SS Format to Seconds. 14-38
CNVTIME: Convert Time in Seconds to HH:MM:SS 14-39
QAODUMP: Submits Commands to Obtain a Console Dump 14-40

Appendix A SYSPROG EXEC Cross-Reference
BMC Software, Inc., Confidential and Proprietary Information

 Contents xiii

Appendix B Using CLIST Conventions and Syntax in AutoOPERATOR CLIST
EXECs

Using Expressions and Operators in CLIST EXECs B-1
Using Control Statements in CLIST EXECs . B-2
Using Assignment Statements in CLIST EXECs B-2
Using Conditional Statements in CLIST EXECs B-3
Using Built-in Functions in CLIST EXECs . B-3
TSO Command Restrictions for CLIST EXECs. B-4

Appendix C Passing Parameters to CLIST EXECs in AutoOPERATOR
Understanding the Four Components of a CLIST EXEC C-1

Defining the Language . C-2
Passing Data . C-2
Documenting CLIST EXECs . C-4
Writing the Logic Section. C-5

Describing AutoOPERATOR CLIST EXECs. C-7
Rule-Initiated CLIST EXECs . C-7

Potential Use . C-7
Parameters Passed to the EXEC . C-7
Example . C-8
Describing the Example . C-9

ALERT-Initiated CLIST EXECs. C-10
Potential Use . C-10
Parameters Passed to the EXEC . C-10
Example 1: ALERT-Initiated EXEC without

Optional Parameters . C-12
Describing the Example . C-13
Example 2: ALERT-Initiated EXEC with Optional Parameters. . . . C-13
Describing the Example . C-14

User-Initiated CLIST EXECs . C-15
Potential Use . C-15
Parameters Passed to the EXEC . C-15
Example . C-16
Describing the Example . C-16

Time-Initiated CLIST EXECs. C-17
Potential Use . C-17
Parameters Passed to the EXEC . C-18
Example . C-19
Describing the Example . C-20

EXEC-Initiated CLIST EXECs. C-21
Potential Use . C-21
Parameters Passed to the EXEC . C-21
Example . C-22
Describing the Example . C-22

Externally Initiated CLIST EXECs . C-23
Potential Use . C-23
Parameters Passed to the EXEC . C-23
Example . C-24
BMC Software, Inc., Confidential and Proprietary Information

xiv MAINVIEW AutoOPERATOR Advanced Automation Guide

Describing the Example .C-24
End-of-Memory Initiated CLIST EXEC .C-25

Potential Use .C-25
Parameters Passed to the EXEC. .C-25
Example .C-26
Describing the Example .C-27

Glossary

Index
BMC Software, Inc., Confidential and Proprietary Information

 Contents xv

BMC Software, Inc., Confidential and Proprietary Information

xvi MAINVIEW AutoOPERATOR Advanced Automation Guide

Figures

Figure 3-1 Sample Comment Section for a REXX EXEC 3-6
Figure 3-2 Rule-Initiated REXX EXEC Example . 3-8
Figure 3-3 ALERT-Initiated REXX EXEC Example 1 . 3-12
Figure 3-4 ALERT-Initiated REXX EXEC Example 2 . 3-13
Figure 3-5 User-Initiated REXX EXEC Example . 3-15
Figure 3-6 Time-Initiated REXX EXEC Example . 3-18
Figure 3-7 EXEC-Initiated REXX EXEC Example . 3-21
Figure 3-8 Externally Initiated REXX EXEC Example 3-23
Figure 3-9 End-of-Memory—Initiated EXECs Example 3-26
Figure 4-1 Saving Variables in a Variable Pool . 4-24
Figure 4-2 Retrieving Variables in a Variable Pool Example 4-26
Figure 4-3 Using VENQ and VDEQ to Serialize Variables 4-28
Figure 4-4 Multi-Line WTO EXEC Example . 4-30
Figure 6-1 Example of Using IMFEXEC CNTL NOCMD 6-17
Figure 6-2 Example 1 of BBI-SS PAS Journal Entry . 6-18
Figure 6-3 Example 2 of BBI-SS PAS Journal Entry . 6-19
Figure 6-4 Example 2 of BBI-SS PAS Journal Entry . 6-20
Figure 8-1 OSPI Script Development Pane . 8-6
Figure 8-2 OSPI Transmission Keystroke Pane . 8-10
Figure 8-3 Example of Error Panel . 8-14
Figure 9-1 AOEXEC Keywords: SS and TGTSS . 9-4
Figure 13-1 EXEC Management Application Panel . 13-7
Figure 13-2 EXEC Test Control Panel . 13-8
Figure 13-3 EXEC Test Control Panel—Advanced Format 13-9
Figure 13-4 EXEC Test Panel with the VAROFF Option 13-13
Figure 13-5 EXEC Test Panel with the VARON Option 13-13
Figure 13-6 EXEC Trace Panel . 13-14
Figure 13-7 Conditional Breakpoint Control Panel . 13-15
Figure 13-8 Variable Selection Panel . 13-18
Figure 13-9 Variable Add/Update Panel . 13-19
Figure 13-10 Variable HEX Display . 13-20
Figure 13-11 OSPI Session Panel . 13-21
Figure 14-1 Example of SYSPROG Utility Usage . 14-4
Figure C-1 Sample Comment Section for a CLIST EXEC C-5
BMC Software, Inc., Confidential and Proprietary Information

 Figures xv

Figure C-2 Rule-Initiated CLIST EXEC Example . C-8
Figure C-3 ALERT-Initiated CLIST EXEC Example 1 . C-13
Figure C-4 ALERT-Initiated CLIST EXEC Example 2 . C-14
Figure C-5 User-Initiated CLIST EXEC Example . C-16
Figure C-6 Time-Initiated CLIST EXEC Example .C-19
Figure C-7 EXEC-Initiated CLIST EXEC Example . C-22
Figure C-8 Externally Initiated CLIST EXEC Example C-24
Figure C-9 End-of-Memory–Initiated EXEC Example . C-27
BMC Software, Inc., Confidential and Proprietary Information

xvi MAINVIEW AutoOPERATOR Advanced Automation Guide

Tables

Table 1-1 Finding Additional Information . 1-2
Table 1-2 Positional Parameters for the ARG (or CLIST PROC) Statement . . . 1-6
Table 1-3 Positional Parameters for the ARG (or CLIST PROC) Statement . . . 1-6
Table 3-1 REXX EXEC Parsing Example 1 . 3-3
Table 3-2 REXX EXEC Parsing Example 2 . 3-3
Table 3-3 Example of ALERT-initiated EXEC Parameters and Variables 3-13
Table 3-4 Time-Initiated EXEC Parameters and Values 3-17
Table 4-1 Variables Supplied by AutoOPERATOR . 4-7
Table 4-2 TSO Modifiable Control Variables for REXX EXECs 4-14
Table 4-3 TSO Modifiable Control Variables for CLIST EXECs 4-14
Table 4-4 TSO Non-Modifiable Control Variables (CLIST EXECs 4-16
Table 7-1 Common Function EXECs . 7-2
Table 7-2 Special Functions . 7-4
Table 9-1 Return Codes . 9-9
Table 9-2 AOEXEC ALERT Parameters Description . 9-14
Table 9-3 FUNCTION Names and IMFCC Return Codes 9-20
Table 9-4 Parameter Description . 9-47
Table 9-5 AOEXEC VDEL Parameters . 9-51
Table 12-1 IMFEXEC Statements . 12-1
Table 12-2 ALERT Command Parameters . 12-6
Table 12-3 FUNCTION Names and IMFCC Return Codes 12-12
Table 12-4 CICS Command Parameters . 12-36
Table 12-5 CICS ALTER Command Parameters . 12-41
Table 12-6 SELECT Command Parameters . 12-140
Table 12-7 TAILOR Command Parameters . 12-157
Table 14-1 @STATASK Parameters . 14-5
Table 14-2 DELVARS Parameters . 14-6
Table 14-3 MUT001C Parameters . 14-7
Table 14-4 SUBMIT Parameters . 14-7
Table 14-5 SUBMITOR Parameters . 14-8
Table 14-6 RASM Parameters . 14-8
Table 14-7 Variables Returned by RASM in the LOCAL POOL 14-9
Table 14-8 RCPU Parameters . 14-10
BMC Software, Inc., Confidential and Proprietary Information

 Tables xvii

Table 14-9 Variables Returned by RCPU in the LOCAL POOL for
Non-PR/SM Systems . 14-10

Table 14-10 Variables Returned by RCPU in the LOCAL POOL
for PR/SM Systems . 14-11

Table 14-11 Variables Returned by RCSS in the LOCAL POOL 14-12
Table 14-12 Variables Returned by RENQ in the LOCAL POOL 14-13
Table 14-13 RIO Parameters . 14-13
Table 14-14 Variables Returned by RIO in the LOCAL POOL 14-14
Table 14-15 RMDE Parameters . 14-14
Table 14-16 Variables Returned by RMDE in the LOCAL POOL 14-15
Table 14-17 RMON Parameters . 14-15
Table 14-18 Variables Returned by RMON in the LOCAL POOL 14-16
Table 14-19 RMPA Parameters . 14-17
Table 14-20 Variables Returned by RMPA in the LOCAL POOL 14-17
Table 14-21 Variables Returned by RMTP in the LOCAL POOL 14-18
Table 14-22 Variables Returned by RPAG in the LOCAL POOL 14-18
Table 14-23 RPRO Parameters . 14-19
Table 14-24 Variables Returned by RPRO in the LOCAL POOL 14-20
Table 14-25 RREP Parameters . 14-21
Table 14-26 Variables Returned by RREP in the LOCAL POOL 14-21
Table 14-27 RREPRX Parameters . 14-22
Table 14-28 Variables Returned by RREPRX in the LOCAL POOL 14-22
Table 14-29 Variables Returned by RRES in the LOCAL POOL 14-23
Table 14-30 RRSM Parameters . 14-24
Table 14-31 Variables Returned by RRSM in the LOCAL POOL 14-24
Table 14-32 RSPA Parameters . 14-26
Table 14-33 Variables Returned by RSPA in the LOCAL POOL 14-27
Table 14-34 RSTA Parameters . 14-28
Table 14-35 Variables Returned by RSTA in the LOCAL POOL 14-28
Table 14-36 Variables Returned by RSYS in the LOCAL POOL 14-30
Table 14-37 RTPI Parameters . 14-31
Table 14-38 Variables Returned by RTPI in the LOCAL POOL 14-31
Table 14-39 RTSU Parameters . 14-32
Table 14-40 Variables Returned by RTSU in the LOCAL POOL 14-32
Table 14-41 @TIMER Parameters . 14-34
Table 14-42 JES2DI Parameters . 14-36
Table 14-43 Variables Returned by JES2DI in the LOCAL POOL 14-37
Table 14-44 Variables Returned by JES2DQ in the LOCAL POOL 14-38
Table 14-45 CNVSECS Parameters . 14-38
Table 14-46 Variables Returned by CNVSECS in the LOCAL POOL 14-38
Table 14-47 CNVTIME Parameters . 14-39
Table 14-48 Variables Returned by CNVTIME in the LOCAL POOL 14-39
Table 14-49 QAODUMP Parameters . 14-40
Table A-1 SYSPROG Service EXEC and Variable Cross-ReferenceA-1
Table C-1 Example of ALERT-Initiated EXEC Parameters

and Variables . C-14
BMC Software, Inc., Confidential and Proprietary Information

xviii MAINVIEW AutoOPERATOR Advanced Automation Guide

About This Book

The MAINVIEW AutoOPERATOR Advanced Automation
Guide is for system programmers who need to perform
advanced automation tasks in the data center.

Use this manual with the MAINVIEW AutoOPERATOR
product (also referred to simply as AutoOPERATOR) to
learn about

• how you can use REXX EXECs with AutoOPERATOR
to create EXECs that you can use to automate your
environment, including

— how AutoOPERATOR processes parameters in
EXECs

— how to use variables and variable pools

— how to control EXEC execution in AutoOPERATOR

— how to perform some advanced tasks with EXECs
across targets

— how to debug your AutoOPERATOR EXECs

• how to use the Open Systems Procedural Interface
(OSPI) to interact with VTAM-based products

This manual also documents

• the IMFEXEC command statements that you can use
with AutoOPERATOR EXECs

• utility EXECs that are supplied by AutoOPERATOR
 About This Book xix

How This Book Is Organized

This book is organized as follows. In addition, this book
contains a glossary of terms and an index.

Chapter/Appendix Description

Chapter 1, “Introduction to Using
AutoOPERATOR and EXECs to
Automate Your Environment”

Discusses how you can
• Use REXX EXECs and AutoOPERATOR

IMFEXEC commands to write automation
tasks

• Use variables to save data
• Control EXEC execution once you schedule

the EXEC

Chapter 2, “Using REXX Conventions
and Syntax in AutoOPERATOR REXX
EXECs”

Describes the conventions, syntax, and
restrictions for writing REXX EXECs

Chapter 3, “Passing Parameters to
REXX EXECs in AutoOPERATOR”

describes how AutoOPERATOR interprets
and uses information passed to EXECs in
positional parameters

Chapter 4, “Using Variables in REXX
EXECs”

describes the different types of variables and
their pools and how to manipulate the pools

Chapter 5, “Controlling EXEC Execution” describes the different ways you can send an
EXEC to run and how to control its execution

Chapter 6, “Using Advanced Techniques
with AutoOPERATOR EXECs”

describes how you can send EXECs,
messages, and ALERTS to different targets with
EXECs

Chapter 7, “Accessing DB2 from
AutoOPERATOR”

describes how you can access DB2 from
AutoOPERATOR with REXX EXECs if you have
the BMC Software RxD2/LINK product installed

Chapter 8, “Interacting with VTAM
Applications with OSPI”

describes how to use Open Systems Procedural
Interface (OSPI) to communicate with VTAM
applications

Chapter 9, “Performing Automation Using
AOAnywhere”

describes how to use the AOAnywhere EXEC
syntax to perform automation from outside the
AutoOPERATOR BBI-SS PAS

Chapter 10, “Accessing Array Data with
AutoOPERATOR EXECs”

describes how to use IMFEXEC ARRAY
commands to access data collected in arrays

Chapter 11, “Using the MAINVIEW API” describes commands, functions and facilities
that allow AutoOPERATOR users to access
data available on the MAINVIEW Databus with
AutoOPERATOR EXECs

Chapter 12, “Using the IMFEXEC
Statements”

lists the IMFEXEC command statements you
can use with REXX to write EXECs to
accomplish advanced automation tasks

Chapter 13, “Testing and Debugging
EXECs Interactively”

describes when and how to use the
AutoOPERATOR EXEC Tester and provides
examples of its features

Chapter 14, “Using the AutoOPERATOR-
Supplied Utility EXECs”s

lists the AutoOPERATOR-supplied utility EXECs
available with AutoOPERATOR
xx MAINVIEW AutoOPERATOR Advanced Automation Guide

Appendix A, “SYSPROG EXEC Cross-
Reference”

contains utility EXECs

Appendix B, “Using CLIST Conventions
and Syntax in AutoOPERATOR CLIST
EXECs”

describes statements and variables you can use
for a CLIST EXEC

Appendix C, “Passing Parameters to
CLIST EXECs in AutoOPERATOR”

describes
• The four components of a CLIST EXEC
• The differences in the ways parameters

are passed, based on how an
AutoOPERATOR CLIST EXEC is invoked

Chapter/Appendix Description
 About This Book xxi

MAINVIEW AutoOPERATOR Product Library

MAINVIEW AutoOPERATOR is available with eight
options:

• MAINVIEW AutoOPERATOR for OS/390
• MAINVIEW AutoOPERATOR for IMS
• MAINVIEW AutoOPERATOR for CICS
• MAINVIEW AutoOPERATOR Access NV
• MAINVIEW AutoOPERATOR TapeSHARE
• MAINVIEW AutoOPERATOR for MQSeries
• MAINVIEW AutoOPERATOR for SAP High

Availability
• MAINVIEW AutoOPERATOR Elan Workstation

The base product and these options are documented in the
following MAINVIEW AutoOPERATOR manuals:

• MAINVIEW AutoOPERATOR Customization Guide

• MAINVIEW AutoOPERATOR Basic Automation Guide

• MAINVIEW AutoOPERATOR Advanced Automation
Guide

• MAINVIEW AutoOPERATOR Options User Guide

• MAINVIEW AutoOPERATOR for MQSeries Installation
and User Guide

• MAINVIEW AutoOPERATOR Reference Summary

• MAINVIEW AutoOPERATOR Solutions Guide

This manual also makes several references to the BMC
Software Intercommunications (BBI) PAS, which provides
subsystem communication in its own MVS address space.
The BBI online environment is described in the following
books:

• MAINVIEW Installation Requirements Guide
• MAINVIEW Administration Guide
• Using MAINVIEW
xxii MAINVIEW AutoOPERATOR Advanced Automation Guide

Related Reading

The following list identifies the IBM documents that are
referenced in this guide:

• MVS/ESA Initialization and Tuning Guide, GC28-1635

• TSO Extensions Version 2: CLISTs, SC38-1876

• TSO Extensions Version 2: REXX/MVS User’s Guide,
SC28-1882

• TSO Extensions Version 2: REXX/MVS Reference,
SC28-1883

• TSO Extensions Version 2: Customization, SC28-1872

• TSO Extensions Version 2: Command Reference, SC28-
1881

• CICS Supplied Transactions, SC33-1686-02

• CICS Operations and Utilities Guide, SC33-1685

• Routing and Descriptor Codes, GC28-1194

• Routing and Descriptor Codes, GC28-1666

• Routing and Descriptor Codes, GC28-1816

• Supervisor Services and Macro Instructions, GC28-1154

and the following BMC Software documents:

• MAINVIEW Products General Information

• MAINVIEW Common Customization Guide

• OS/390 and z/OS Installer Guide

• MAINVIEW Installation Requirements Guide

• MAINVIEW Administration Guide

• Using MAINVIEW

• MAINVIEW Quick Reference

• OS/390 and z/OS Installer Guide
 About This Book xxiii

• Implementing Security for MAINVIEW Products

• MAINVIEW Alternate Access Implementation and User
Guide

• MAINVIEW Alarm Manager User Guide

• RxD2™ User Guide

• MAINVIEW for CICS User Guide

Conventions

The following syntax notation is used in this manual. Do not
enter the special characters.

• Brackets, [], enclose optional parameters or keywords.

• Braces, { }, enclose a list of parameters; one parameter
must be chosen.

• A vertical line, | , separates alternative options; one
option can be chosen.

• An italicized or underlined parameter is the default.

• AN ITEM IN CAPITAL LETTERS must be entered
exactly as shown.

• Items in lowercase letters are values that you supply.
xxiv MAINVIEW AutoOPERATOR Advanced Automation Guide

10
Chapter 1 Introduction to Using
AutoOPERATOR and
EXECs to Automate Your
Environment

This manual documents how you can use REXX EXECs with
AutoOPERATOR to perform automation tasks on your system. This
document also includes references to and examples of CLIST EXECs.

For complete information for writing REXX EXECs, refer to the IBM
publications TSO/E: REXX/MVS User’s Guide and TSO/E: REXX/MVS
Reference. (For CLIST EXECs, refer to the IBM publication TSO/E:
CLISTS.)

This chapter briefly discusses REXX EXECs and how you can use them with
AutoOPERATOR to create programs to automate your environment. This
chapter introduces the following concepts:

• Using EXECs with AutoOPERATOR

• Choosing the EXEC language

• The seven different ways an EXEC can be scheduled

• Passing information to EXECs

• Controlling EXEC execution

• Using variables in EXECs
BMC Software, Inc., Confidential and Proprietary Information

Chapter 1 Introduction to Using AutoOPERATOR and EXECs to Automate Your Environment 1-1

Overview
Overview

Basic automation tasks, such as reacting to messages, are provided through
facilities such as the AutoOPERATOR Rule Processor application. More
complex automation tasks, including interfaces to performance, scheduling,
and network products, require programs that can be tailored to specific site
needs. These programs, called AutoOPERATOR EXECs, are written by
system programmers or operators using either the TSO CLIST or TSO
REXX language.

AutoOPERATOR EXECs

• are IBM TSO CLISTs and REXX programs with special language
extensions for CICS, IMS, and MVS management through the use of
IMFEXEC commands

For a list of REXX commands that AutoOPERATOR does not support,
refer to “Restrictions in REXX EXECs” on page 2-8.

For a list of TSO/E commands that AutoOPERATOR does not support
for CLIST EXECs, refer to “TSO Command Restrictions for CLIST
EXECs” on page B-4.

• use the same logical expression and operator syntax as TSO CLISTs and
REXX programs and provide many of the same TSO symbolic control
variables, built-in functions, assignment statements, and conditional
statements.

REXX EXECs are described in this book in “Using REXX Conventions
and Syntax in AutoOPERATOR REXX EXECs” on page 2-1 and in the
IBM publication, TSO/E: REXX/MVS User’s Guide.

CLIST EXECs are described in this book in Appendix B, “Using CLIST
Conventions and Syntax in AutoOPERATOR CLIST EXECs” and in the
IBM publication, TSO/E: CLISTS.

• are upward-compatible with TSO releases and versions.

Table 1-1 shows where you can find more information in this book.

Table 1-1 Finding Additional Information (Part 1 of 2)

To learn more about See page

Using REXX syntax, conventions, and built-in functions 2-1

Passing parameters to EXECs in AutoOPERATOR 3-1

Using variables 4-1
BMC Software, Inc., Confidential and Proprietary Information

1-2 MAINVIEW AutoOPERATOR Advanced Automation Guide

Choosing the EXEC Language: REXX or CLIST
Choosing the EXEC Language: REXX or CLIST

For each task, you can choose either REXX or CLIST to write your EXECs
with. CLIST is a language which is familiar to many system programmers,
but REXX is being acclaimed for its simplicity and power.

The following performance considerations apply:

• REXX EXECs perform approximately 25% faster than CLIST EXECs.

• CLIST EXEC performance can be improved by placing all comments on
statements that do not include executable statements.

• Using VLF can reduce both CPU and I/O consumption.

Refer to the IBM publication TSO/E Customization Manual for
information about how to use VLF.

For a complete discussion about writing TSO CLISTs, refer to the IBM
publication TSO/E: CLISTS. For a complete discussion about writing TSO
REXX EXECs, refer to the IBM publications TSO/E: REXX/MVS User’s
Guide and TSO/E: REXX/MVS Reference.

Invoking AutoOPERATOR EXECs

A system programmer or operator can interactively create EXECs (consisting
of a subset of REXX commands and IMFEXEC commands) by using
standard edit procedures. The EXECs are then stored in the online
SYSEXEC DD (or SYSPROC DD for CLIST EXECs) for later execution.

These EXECs are powerful programs that execute in the AutoOPERATOR
environment and interact with a target, thus enabling you to create robust
automation procedures.

Controlling EXEC execution 5-1

Using advanced techniques 6-1

Using the IMFEXEC statements in AutoOPERATOR REXX EXECs 12-1

Table 1-1 Finding Additional Information (Part 2 of 2)

To learn more about See page
BMC Software, Inc., Confidential and Proprietary Information

Chapter 1 Introduction to Using AutoOPERATOR and EXECs to Automate Your Environment 1-3

Invoking AutoOPERATOR EXECs
All EXECs can be initiated or invoked from the SYSEXEC DD (and the
SYSPROC DD for CLIST EXECs) in one of the following ways:

EXEC How it is invoked

Rule-initiated Scheduled when a message or command matches an enabled Rule that
specifies the name of an EXEC to be invoked.

ALERT-initiated Scheduled when you enter any value into the RSP field of the ALERT Detail
Display for an ALERT which has an E in the IND field. The E indicates that
there is a follow-up EXEC associated with the ALERT.

For information regarding the ALERT Management Facility, refer to the
chapter “ALERT Management Facility” in the MAINVIEW
AutoOPERATOR Basic Automation Guide.

User-initiated Scheduled when a user enters an EXEC name from a BBI-TS COMMAND
line with the command prefix % or 4, or is entered as a parameter of the
MVS MODIFY command when it is issued against a BBI-SS PAS.

For example, F SYSB,%EXECA where EXECA is the name of the
EXEC to be scheduled.

You can also schedule a user-initiated EXEC from the AutoOPERATOR
EXEC Manager application. Refer to the MAINVIEW AutoOPERATOR
Basic Automation Guide for more information.

Time-initiated Scheduled when the AutoOPERATOR Timer Facility invokes the specified
EXEC at times you specify. You can use the AutoOPERATOR Timer Facility
to schedule EXECs or the AutoOPERATOR-supplied sample solution
@TIMER. Refer to the MAINVIEW AutoOPERATOR Basic Automation
Guide for more information about using these methods.

EXEC-initiated Scheduled when one EXEC (for example, EXECABC) contains an
IMFEXEC SELECT command statement that invokes a second EXEC (for
example, EXECXYZ).

EXECs scheduled in this way can execute either synchronously or
asynchronously (refer to “Invoking EXECs Synchronously with
IMFEXEC SELECT(EXEC) WAIT(YES)” on page 5-8).

Externally initiated Scheduled from outside of AutoOPERATOR when the program IMFSUBEX
is called from a job step, as a subroutine of a user program, from TSO, or
from another AutoOPERATOR address space.
BMC Software, Inc., Confidential and Proprietary Information

1-4 MAINVIEW AutoOPERATOR Advanced Automation Guide

Passing Information to REXX EXECs
End-of-Memory–initiated

Scheduled at end-of-memory when an initiator, a TSO user, or a started task
is terminated.

After they are invoked, these EXECs perform their specified tasks on your
system.

Passing Information to REXX EXECs

For a REXX EXEC to perform its tasks, it must be able to receive and retain
information about the system. This information is passed to EXECs through:

• Statements called ARG statements

The first statement in an AutoOPERATOR REXX EXEC must state that
this is a REXX EXEC. The next statement is usually the ARG statement
and it is coded with positional parameters that take values from the input
that schedules the EXEC and makes those values available to the EXEC
itself.

Chapter 3, “Passing Parameters to REXX EXECs in AutoOPERATOR”
on page 1 contains examples of ARG statements and the information that
gets passed to them depending on the way the EXEC is invoked.

Refer to Appendix C, “Passing Parameters to CLIST EXECs in
AutoOPERATOR” for examples of the PROC statements for CLIST
EXECs.

• Variables in variable pools

Variables reside in four categories of variable pools and they receive and
retain information that the EXEC requires to complete its tasks.

Chapter 4, “Using Variables in REXX EXECs” on page 1 contains a
discussion about variables and variable pools.

The table on the following two pages summarizes the different possible
values for the positional parameters on a ARG statement for the seven
different EXEC types. The table shows up to 11 positional parameters but
there can be more (up to 255 bytes).
BMC Software, Inc., Confidential and Proprietary Information

Chapter 1 Introduction to Using AutoOPERATOR and EXECs to Automate Your Environment 1-5

Passing Information to REXX EXECs
Table 1-2 Positional Parameters for the ARG (or CLIST PROC) Statement

Positional
Parameter Rule-initiated EXEC

ALERT-initiated
EXEC

User-initiated
EXEC

EXEC-initiated
EXEC

1 Refer to page 3-7 EXEC name EXEC name EXEC name

2 Refer to page 3-7 Refer to page 3-10 First optional
parameter

First optional
parameter

3 Refer to page 3-7 Refer to page 3-10 Second optional
parameter

Second optional
parameter

4 Refer to page 3-7 Refer to page 3-10 Third optional
parameter

Third optional
parameter

5 Refer to page 3-7 Refer to page 3-10 Fourth optional
parameter

Fourth optional
parameter

6 Refer to page 3-7 Refer to page 3-10 Fifth optional
parameter

Fifth optional
parameter

7 Refer to page 3-7 Refer to page 3-10 Sixth optional
parameter

Sixth optional
parameter

8 Refer to page 3-7 Refer to page 3-10 Seventh optional
parameter

Seventh optional
parameter

9 Refer to page 3-7 Refer to page 3-10 Eighth optional
parameter

Eighth optional
parameter

10 Refer to page 3-7 Refer to page 3-10 Ninth optional
parameter

Ninth optional
parameter

11 Refer to page 3-7 Refer to page 3-10 Tenth optional
parameter

Tenth optional
parameter

Note: Each EXEC type is discussed separately in Chapter 3, “Passing Parameters to REXX EXECs in
AutoOPERATOR” on page 1. Refer to that chapter for more detailed information, especially for ALERT-
initiated EXECs and Rule-initiated EXECs.

Table 1-3 Positional Parameters for the ARG (or CLIST PROC) Statement

Positional
Parameter Time-initiated EXEC Externally initiated EXEC

End-of-Memory EXEC or
IMFEOM

1 EXEC name EXEC name sp 1

2 Target name First optional parameter NORMAL or ABNORMAL

3 IMS ID - Used only for
AutoOPERATOR for IMS
option

Second optional parameter N/A

4 BBI-SS PAS subsystem
identifier

Third optional parameter N/A

5 Current Gregorian date Fourth optional parameter N/A

6 Time the EXEC is scheduled Fifth optional parameter N/A

7 Day of the week Sixth optional parameter N/A
BMC Software, Inc., Confidential and Proprietary Information

1-6 MAINVIEW AutoOPERATOR Advanced Automation Guide

Passing Information to REXX EXECs
8 Current Julian date Seventh optional parameter N/A

9 Elapsed time of the active
IMS/VS. Used only for
MAINVIEW AutoOPERATOR
for IMS.

Eighth optional parameter N/A

10 The IMS/VS restart type.
Used only for MAINVIEW
AutoOPERATOR for IMS.

Ninth optional parameter N/A

11 Number of times the EXEC
has been invoked.
Used only for MAINVIEW
AutoOPERATOR for IMS.

Tenth optional parameter N/A

Note: Each EXEC type is discussed separately in Chapter 3, “Passing Parameters to REXX EXECs in
AutoOPERATOR” on page 1. Refer to that chapter for more detailed information, especially for time-initiated
EXECs. See “End-of-Memory-Initiated REXX EXEC” on page 3-24 for information about End-of-Memory—
initiated EXECs.

Table 1-3 Positional Parameters for the ARG (or CLIST PROC) Statement (continued)

Positional
Parameter Time-initiated EXEC Externally initiated EXEC

End-of-Memory EXEC or
IMFEOM
BMC Software, Inc., Confidential and Proprietary Information

Chapter 1 Introduction to Using AutoOPERATOR and EXECs to Automate Your Environment 1-7

Controlling EXEC Execution
Controlling EXEC Execution

Each EXEC represents a unit of work that needs to be completed. Just as any
system that handles requests to complete work, AutoOPERATOR provides
scheduling facilities for EXECs. EXECS are queued for execution to either:

• The Normal queue

• The Priority queue

When an EXEC is scheduled to either the Normal or Priority queue, it waits
for a server, called a thread, to become available.

You can control how an EXEC executes on the system by first specifying:

• How many threads you define for each queue

• Which queue you want to schedule the EXEC for

• Whether you want the EXECs to execute synchronously or
asynchronously

• What time limits you specify for the queues

Once an EXEC is scheduled and running, you can also use certain BBI
control commands to manually manipulate the progress of the EXEC.
Chapter 5, “Controlling EXEC Execution” on page 1 contains discussions for
all these items.

Using Variables in AutoOPERATOR EXECs

Complex EXECs must be able to do much more than issue commands and
return control to their callers. An EXEC must be able to request information
from AutoOPERATOR (and other products), compare the information,
compare the time elapsed since the last observation, and effect changes that
other EXECs or products carry out.

This type of logic requires the ability to save information, either temporarily
or permanently, in a simple manner so that it can be accessed later by the
same EXEC or other EXECs.

To retain this information for EXECs, AutoOPERATOR provides four kinds
of variables and variable pools. For a complete discussion, see Chapter 4,
“Using Variables in REXX EXECs” on page 1.
BMC Software, Inc., Confidential and Proprietary Information

1-8 MAINVIEW AutoOPERATOR Advanced Automation Guide

Using Variables in AutoOPERATOR EXECs

Variable Pool Name Description

TSO variables Exist for the life of the EXEC.
This chapter lists:
• AutoOPERATOR–supplied TSO variables
• Modifiable TSO variables
• Non-modifiable TSO variables

LOCAL variables LOCAL variables are stored in a pool that can be accessed only by the
current EXEC and other EXECs (using IMFEXEC SELECT WAIT(YES)).
AutoOPERATOR passes information to an EXEC in this pool. It is also used
by AOAnywhere when sharing variables with an invoking EXEC. The LOCAL
variable pool is freed when the EXEC ends and its contents are lost.

Two types of GLOBAL
variable pools: SHARED and
PROFILE

Can be saved for later executions of the same EXEC or other EXECs.
The use of the expression “GLOBAL variables” in this book refers to both
SHARED and PROFILE variables.

SHARED variables
SHARED variables are stored in a
pool that is accessible to all EXECs
in the BBI-SS PAS . They can be
read, modified, created and deleted
by any number of EXECs or Rules.
Since EXECs can access them
simultaneously, their access should
be serialized (see IMFEXEC VENQ
and VDEQ). These variables exist in
storage beyond the life of the EXEC
that created them.
AutoOPERATOR creates a number
of SHARED variables that contain
system-specific information.
SHARED variables are accessible to
the Rules Processor and remain in
memory when the subsystem is
terminated. However, they are lost
across IPLs or when a subsystem is
restarted with the VPOOL=RESET
option.
This chapter lists the
AutoOPERATOR-supplied variables.

PROFILE variables
PROFILE variables are similar to
SHARED variables with the
exception that they are persistent
across IPLs and their contents are
never lost unless explicitly deleted.
PROFILE variables are not
accessable from Rules.

Note: Variable names must be at least 1 and not more than 32 characters in length. The contents of any
variable cannot exceed 256 characters.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 1 Introduction to Using AutoOPERATOR and EXECs to Automate Your Environment 1-9

Using Variables in AutoOPERATOR EXECs
BMC Software, Inc., Confidential and Proprietary Information

1-10 MAINVIEW AutoOPERATOR Advanced Automation Guide

8

Chapter 2 Using REXX Conventions
and Syntax in
AutoOPERATOR REXX
EXECs

This chapter describes statements and variables you can use for a REXX
EXEC. For more complete information about writing REXX EXECs in
general, refer to the IBM manuals:

• TSO/E: REXX/MVS User’s Guide

• TSO/E: REXX/MVS Reference

Using Expressions and Operators in REXX EXECs

All of the arithmetic, comparative and logical operators described in the IBM
publication TSO Extensions Version 2 REXX Reference guide are valid in a
REXX EXEC expression running within AutoOPERATOR. An expression
combines variables, whole numbers, and character strings with operators. For
example, the EXEC statement

IF CMD = SUBSTR(Z1,1,1) THEN ...

uses the comparative operator = in an expression with the REXX IF
conditional statement to compare the first character of the character string in
the Z1 symbol to the value in the CMD symbol.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 2 Using REXX Conventions and Syntax in AutoOPERATOR REXX EXECs 2-1

Using Control Statements in REXX EXECs
The function SUBSTR is a built-in REXX function that replaces the function
call with specific characters from a character string. The actual characters are
selected by specifying a starting position and a length for the portion of the
character string to be used.

In this example, SUBSTR is replaced with the first character of the character
string substituted for the Z1 symbol.

Using Control Statements in REXX EXECs

AutoOPERATOR EXECS support the following REXX control statements1.

Statement Description

CALL Used to invoke a routine or control the trapping of certain conditions.

EXIT Used to leave a program unconditionally.

ITERATE Alters the flow of control within a repetitive DO loop.

LEAVE Causes immediate exit from one or more repetitive DO loops.

RETURN Used to return control (and possibly a result) from a REXX program or
internal routine to the point of its invocation.

Note: If the EXEC is invoked with the IMFEXEC SELECT EXEC(exec)
WAIT(yes) statement, the RETURN control statement can be used
only to return control from the REXX EXEC. Passing a value
(RESULT) is not supported.

SELECT Used to conditionally execute one of several alternative instructions or sets of
instructions.

SIGNAL Causes an abnormal change in the flow of control, or controls the trapping of
certain conditions.

1The descriptions for these REXX control statements are from the IBM publication, TSO/E: REXX/MVS
Reference, Chapter 3, “Keyword Instructions”.
BMC Software, Inc., Confidential and Proprietary Information

2-2 MAINVIEW AutoOPERATOR Advanced Automation Guide

Using Assignment Statements in REXX EXECs
Using Assignment Statements in REXX EXECs

AutoOPERATOR EXECs support the following REXX assignment
statements. The descriptions for the following REXX assignment statements are from the

IBM publication, TSO/E: REXX/MVS Reference, Chapter 3, “Keyword Instructions”

Statement Description

ARG Used to retrieve argument strings passed to a program or internal routine and
assign them to variables.

PARSE Used to assign data to one or more variables.

PULL Used to read a string from the queue (data stack) and assign it to a variable.

symbol = data This assignment statement is the most common way of changing the value of
a variable.

Using Conditional Statements in REXX EXECs

AutoOPERATOR EXECs support the following REXX conditional
statements.

Statement Description

DO-WHILE-END Executes a set of related instructions only while specific condition exists.

DO-UNTIL-END Executes a set of related instructions until a specific condition is met.

DO-TO-BY-FOR Executes a set of related instructions using special keywords to control the
loop. See the TSO Extensions Version 2 REXX Reference guide for more
information on these keywords.

DO-FOREVER Executes a set or related instructions until a specific instruction is issued to
end the loop (for example, LEAVE or SIGNAL).

IF-THEN-ELSE Used to conditionally execute an instruction or set of instructions depending
on the evaluation of the expression.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 2 Using REXX Conventions and Syntax in AutoOPERATOR REXX EXECs 2-3

Using Built-in Functions in REXX EXECs
Using Built-in Functions in REXX EXECs

AutoOPERATOR supports the following REXX built-in functions.1 For
additional information on syntax and parameters to pass to the function, see
the TSO Extensions Version 2 REXX Reference guide.

1The descriptions for these REXX built-in functions are from the IBM publication, TSO/E: REXX/MVS Reference,
Chapter 4, “Keyword Instructions”.

Built-in Function Description

ABBREV() Determines whether a character string is an abbreviation of another
character string.

ABS() Returns the absolute value of a number.

ADDRESS() Returns the name of the environment to which host commands are
currently being submitted.

ARG() Returns an argument string or information about the argument strings to a
program or internal routine.

CENTER() or CENTRE() Returns a string centered according to specifications.

COMPARE() Determines if two strings are equal and returns 0 if so. If they are not equal,
the character position at which they become not equal is returned.

CONDITION() Returns the condition information associated with the current trapped
condition.

COPIES() Concatenates strings together and returns the concatenated string.

C2D() Character to decimal. Returns the decimal value of the binary
representation of a string.

C2X() Character to hexadecimal. Converts a character string to its hexadecimal
representation.

DATATYPE() Determines whether a string is numeric or character. Also determines
whether a string is alphanumeric, binary, a mixed SBCS/DBCS string, a
DBCS string, lowercase, mixed case, a number, a symbol, uppercase, a
whole number, or a hexadecimal number.

DATE() Returns the local date in the format: dd mon yyyy

DELSTR() Deletes a substring from a character string.

DELWORD() Deletes a string from a group of character strings.

DIGITS() Returns the current setting of NUMERIC DIGITS.

D2X() Decimal to hexadecimal. Returns a string of hexadecimal characters that
represent a decimal number.

ERRORTEXT() Returns the error text associated with a particular error message number.

EXTERNALS() Always returns a 0. This function is used under VM/SP.

FIND() Searches for a phrase within a character string and returns the position of
the first word of the phrase in the string.

FORM() Returns the current setting of NUMERIC FORM.

FORMAT() Rounds and formats a number.
BMC Software, Inc., Confidential and Proprietary Information

2-4 MAINVIEW AutoOPERATOR Advanced Automation Guide

Using Built-in Functions in REXX EXECs
FUZZ() Returns the current setting of NUMERIC FUZZ.

INDEX() Searches for a character string within another character string and returns
either the starting position of the character string being searched for or 0.

INSERT() Inserts a character string into another character string.

JUSTIFY() Formats blank-delimited words by adding pad characters between words to
justify both margins.

LASTPOS() Returns the position of the last occurrence of one string within another.

LEFT() Returns a string containing the leftmost characters of a string.

LENGTH() Returns the length of a string.

LINESIZE() For AutoOPERATOR, always returns ’131’.

MAX() Returns the largest number from a list of specified numbers.

MIN() Returns the smallest number from a list of specified numbers.

OVERLAY() Overlays part or all of a string with a new string.

POS() Returns the position of one string within another.

QUEUED() Returns the number of lines remaining in the queue at the time when the
function is invoked.

RANDOM() Returns a pseudo-random nonnegative whole number.

REVERSE() Returns a string, swapped end for end.

RIGHT() Returns a string containing the rightmost characters of a string.

SIGN() Returns a number that indicates the sign of a number.

SOURCELINE() Returns a source line in the current EXEC.

SPACE() Formats the blank-delimited words in a string with pad characters between
each word.

STRIP() Removes leading and/or trailing characters from a string.

SUBSTR() Returns the substring of a string.

SUBWORD() Returns a substring of a string of words. The number of words returned is
specified by a length parameter.

SYMBOL() Returns the state of a symbol (BAD, LIT, or VAR).

TIME() Returns the local time. By default, the time is returned in the 24-hour clock
format (hh:mm:ss).

TRACE() Returns trace actions currently in effect.

TRANSLATE() Translates characters in a string to other characters, or reorders characters
in a string.

TRUNC() Returns the integer part of a number and, optionally, the number of decimal
places specified.

USERID() While running under AutoOPERATOR, by default will return the subsystem
(SS) ID of AutoOPERATOR. If a value is coded for the PREFIX parameter in
BBPARM member AAOEXP00, that will be the value returned.

VALUE() Returns the value of a specified symbol.

Built-in Function Description
BMC Software, Inc., Confidential and Proprietary Information

Chapter 2 Using REXX Conventions and Syntax in AutoOPERATOR REXX EXECs 2-5

Using TSO/E Functions for REXX EXECs
In addition to these built-in functions, if you have the BMC Software product
RxD2/LINK product installed, AutoOPERATOR also has access to the
following REXX built-in functions.

Using TSO/E Functions for REXX EXECs

AutoOPERATOR supports the following TSO/E REXX functions.1 For
additional information on syntax and parameters to pass to the function, see
the TSO Extensions Version 2 REXX Reference guide.

VERIFY() Verifies that a string is composed of a predefined set of characters and
returns the position of the first character in the string that is not within the
predefined set of characters.

WORD() Returns a blank-delimited word from a string.

WORDINDEX() Returns the position of the first character in a specified blank-delimited word
in a specified string.

WORDLENGTH() Returns the length of a specified blank-delimited word in a specified string.

WORDPOS() Searches a specified string for the first occurrence of a specified sequence
of blank-delimited words and returns the word number of the first word of
the specified sequence of blank-delimited words found in the specified
string.

WORDS() Returns the number of blank-delimited words in a specified string.

X2C() Converts a hexadecimal string to a character string.

X2D() Converts a hexadecimal string to decimal format.

 Built-in Function Description

CONVSTCK(tod) Converts the 8-byte TOD clock into display format of YYYYDDD
HHMMSSTH.

CTOD(tod) Converts the 8-byte TOD clock time into display format of HHMMSSTH.

F2C(f) Converts a floating point string to a character string.

GBLVAR Creates and manages the global variable environment.

P2C(p) Creates a packed decimal string to a character string.

UENV(hcename,pgm) Identifies to REXX Host Command Environment (HCE) called hcename,
such that pgm will receive control for ADDRESS hcename.

VARSPF() Converts a compound REXX variable to a simple ISPF dialog variable.

WAITSEC() Specifies the number of seconds to wait before continuing to process.

1The descriptions for these REXX built-in functions are from the IBM publication, TSO/E: REXX/MVS Reference,
Chapter 4, “Keyword Instructions”.

Built-in Function Description
BMC Software, Inc., Confidential and Proprietary Information

2-6 MAINVIEW AutoOPERATOR Advanced Automation Guide

Using TSO/E REXX Commands in REXX EXECs
Using TSO/E REXX Commands in REXX EXECs

AutoOPERATOR supports the following TSO/E REXX commands1 if you
specify the ADDRESS MVS command prior to issuing the command. For
additional information on syntax and usage of the commands, see the TSO
Extensions Version 2 REXX Reference guide.

Command Description

DELSTACK Deletes the most recently created data stack that was created by the
NEWSTACK command, and all elements on it.

If a new data stack was not created, DELSTACK removes all the
elements from the original data stack.

DROPBUF Deletes the most recently created data stack buffer that was created by the
MAKEBUF command, and all elements on the data stack in the buffer.

To remove a specific data stack buffer and all buffers created after it,
issue the DROPBUF command with the number of the buffer.

EXECIO Can be used to perform input and output operations to and from a data set, a
stack, or a list of variables.

MAKEBUF Creates a new buffer on the data stack.

 Function Description

LISTDSI() Sets several variables that describe a data set and returns a function code of 0, 4,
or 16 that shows the completion code.

MSG() Returns the previous status of message issuing, which can be ON or OFF. It also
allows you to turn message issuing on or off.

OUTTRAP() Returns the name of the variable in which trapped output is stored, or if trapping is
not in effect, returns the word off. It also can be used to set trapping into effect.

PROMPT() Returns the previous setting of prompting for the EXEC, which will always be OFF
when running under AutoOPERATOR.

STORAGE() Returns a specified number of bytes of data from a specified storage address. It
also allows an EXEC to modify storage.

SYSDSN() Returns a message indicating whether a data set exists and is available for use.

SYSVAR() Sets variables that describe the current environment. The variable set depends
upon the option used.

1The descriptions for these TSO/E REXX commands are from the IBM publication, TSO/E: REXX/MVS
Reference, Chapter 10, “TSO/E REXX Commands”.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 2 Using REXX Conventions and Syntax in AutoOPERATOR REXX EXECs 2-7

Restrictions in REXX EXECs
The MAKEBUF command can be issued from REXX EXECs that
execute in both the TSO/E address space and non-TSO/E address spaces.

NEWSTACK Creates a new data stack and hides or isolates the current data stack.

Elements on the previous data stack cannot be accessed until a
DELSTACK command is issued to delete the new data stack and any
elements remaining in it.

QBUF Queries the number of buffers that were created on the data stack with the
MAKEBUF command.

QELEM Queries the number of data stack elements that are in the most recently
created data stack buffer.

QSTACK Queries the number of data stacks in existence for an EXEC that is executing.

SUBCOM Queries the existence of a specified host command environment.

Restrictions in REXX EXECs

AutoOPERATOR REXX EXECs do not support the following REXX
language facilities.

• Immediate Commands:

— HI - Halt Interpretation, HT - Halt Typing

— RT - Resume Typing, TS - Trace Start

— TE - Trace End

AutoOPERATOR REXX EXECs do not support the following REXX
function:

• XRANGE()

AutoOPERATOR REXX EXECs do not support using the TSO/E CALL or
TSO/E Service Facility (IKJEFFTSR) to give control to an authorized
program.
BMC Software, Inc., Confidential and Proprietary Information

2-8 MAINVIEW AutoOPERATOR Advanced Automation Guide

26
Chapter 3 Passing Parameters to
REXX EXECs in
AutoOPERATOR

This chapter describes:

• The four components of a REXX EXEC

• The differences in the ways parameters are passed based on how an
AutoOPERATOR REXX EXEC is invoked

Understanding the Four Components of a REXX
EXEC

This section briefly describes the four components of REXX EXECs. There
are four steps to writing REXX EXECs:

• Defining the language

All EXECs are assumed to be CLIST EXECs unless the first statement
identifies the EXEC as a REXX EXEC. Refer to the IBM publication
TSO/E: REXX/MVS User’s Guide for a complete discussion.

• Passing data

You must include a statement—called the ARG statement—that defines
the input parameters to be used by the EXEC logic.

• Documenting the EXEC
BMC Software, Inc., Confidential and Proprietary Information

Chapter 3 Passing Parameters to REXX EXECs in AutoOPERATOR 3-1

Understanding the Four Components of a REXX EXEC
You can include comments, enclosed by /* and */, throughout the EXEC
to describe the purpose of the EXEC statements

• Writing the logic

A logic section that contains REXX EXEC statements and commands,
and AutoOPERATOR IMFEXEC commands that perform user-defined
automation tasks. Use the IMFEXEC commands to specify the
automation actions and commands you want the EXECs to perform.

Each of these parts is described in the following sections.

Defining the Language

The TSO/E processor assumes that it is executing a CLIST EXEC unless the
first statement it encounters (the PROC statement) defines the EXEC as a
REXX EXEC. For example, if the first statement is as follows:

/* REXX EXEC */

then the EXEC is processed as a REXX EXEC.

Passing Data

The REXX EXEC receives data to perform its task through the ARG
statement. AutoOPERATOR uses these parameters to pass values to an
EXEC when the EXEC is invoked.

The information passed through the ARG statements varies, depending on the
way the EXEC is invoked. For example, an EXEC can be invoked by a Rule
or by a user and the values passed to the EXEC for these two methods are
different.

The ARG statement syntax is:

[UPPER] ARG [template]

where:
BMC Software, Inc., Confidential and Proprietary Information

3-2 MAINVIEW AutoOPERATOR Advanced Automation Guide

Understanding the Four Components of a REXX EXEC
UPPER Optional. Forces translation of any character string to uppercase. If UPPER is
not specified, then no translation takes place.

ARG Instructs REXX to process the arguments passed to this REXX EXEC.

template Describes the rules to be used in parsing the input parameters. The template
is a list of symbols separated by blanks and/or patterns.

Handling Strings of Periods

AutoOPERATOR passes all variables required by the type of EXEC plus a
character string of ". ". The sum of the number of characters in this
string and the number of characters in the variables passed to the EXEC is
255. This string of periods is concatenated to the value of the last positional
parameter passed to the EXEC.

For example, if the input parameters are:

This is a test

Then you code the ARG statement like this:

ARG P1 P2 P3

And the values of the parameters P1, P2, and P3 are:

To avoid this string of periods, code a single period (.) or any valid variable
name after the last variable name in the template; for example:

ARG P1 P2 P3 .

This eliminates the string. Then the values of the parameters P1, P2, and P3
are:

Table 3-1 REXX EXEC Parsing Example 1

Positional Parameter Parameter Value

P1 This

P2 is

P3 a test (and so on)

Table 3-2 REXX EXEC Parsing Example 2 (Part 1 of 2)

Positional Parameter Parameter Value

P1 This
BMC Software, Inc., Confidential and Proprietary Information

Chapter 3 Passing Parameters to REXX EXECs in AutoOPERATOR 3-3

Understanding the Four Components of a REXX EXEC
If fewer values are to be passed to the EXEC than there are parameters
specified, the extra parameters are filled in with a dummy value of . (period).
It is not necessary to use each symbolic parameter in the logic section of the
EXEC.

In AutoOPERATOR, EXECs can be invoked in seven ways. The information
(or input) passed to the REXX EXEC varies depending on how the EXEC is
invoked. The input passed to the positional parameters can be different if an
EXEC is invoked by a Rule (Rule-initiated EXECs) or by a user (user-
initiated EXECs).

Following is an example ARG statement for an EXEC named PAYROLL
which starts or stops a payroll application when a user schedules the EXEC:

ARG PAYROLL P1

To invoke the EXEC, enter its name (PAYROLL) and the parameter value
(START or STOP) on the COMMAND line of any AutoOPERATOR panel.
AutoOPERATOR searches BBPROC and executes the EXEC when it finds a
member named PAYROLL. It passes a START or STOP value to the P1
positional parameter and passes the EXEC name, PAYROLL, as the first
positional parameter in the variable named PAYROLL.

AutoOPERATOR does not do the parsing of the message text for Message-
initiated EXECs. For example, to parse the message:

E JOBNAME,PERFORM=999

you must code the REXX EXEC as:

/* REXX */
PARSE ARG P1 P2 ’,’ P3 ’,’ P4

P2 is

P3 a

Table 3-2 REXX EXEC Parsing Example 2 (Part 2 of 2)

Positional Parameter Parameter Value
BMC Software, Inc., Confidential and Proprietary Information

3-4 MAINVIEW AutoOPERATOR Advanced Automation Guide

Understanding the Four Components of a REXX EXEC
The result is:

P1 = E
P2 = JOBNAME
P3 = PERFORM
P4 = 999

The following table lists where you can find complete discussions of each
type of REXX EXEC and the parameters that are passed to them:

Documenting REXX EXECs

As discussed in “Passing Data” on page 3-2, the ARG statement identifies the
parameters that the subsequent IMFEXEC commands and EXEC statements
process.

Following the ARG statement, you should have a section that uses comment
statements to describe the symbolic parameters. A comment statement is as
follows:

/* This is an example of a comment in an EXEC */

This comment section is optional but highly recommended because it
provides consistency and helps other system administrators, analysts, or
operators who use or maintain the EXEC. The comment section explains the
purpose of the EXEC and the expected values to be passed to each symbolic
parameter defined by the ARG statement.

Figure 3-1 shows an example of the ARG statement and comment section for
a user-initiated REXX EXEC named PAYROLL.

To read about See page

Rule-initiated EXECs 3-7

ALERT-initiated EXECs 3-9

User-initiated EXECs 3-14

Time-initiated EXECs 3-16

EXEC-initiated EXECs 3-19

Externally-initiated EXECs 3-22

End-of-Memory-initiated EXECs 3-24
BMC Software, Inc., Confidential and Proprietary Information

Chapter 3 Passing Parameters to REXX EXECs in AutoOPERATOR 3-5

Understanding the Four Components of a REXX EXEC
Figure 3-1 Sample Comment Section for a REXX EXEC

/* REXX EXEC */
ARG PAYROLL P1
/*--*/
/* DOC GROUP (MVS) */
/* DOC FUNC (PAYROLL) */
/* DOC CODE (PY) */
/* DOC DESC (Start/Stop PAYROLL Application) */
/* DOC AUTHOR (JAC) */
/*--*/
/* EXEC Description: This sample EXEC, named PAYROLL, starts or */
/* stops the payroll application when the EXEC name, PAYROLL,along*/
/* with a START or STOP parameter, is entered in the command input*/
/* line of an AutoOPERATOR panel. */
/*--*/
/* Symbolic Parameter Definitions: */
/* */
/* EXECNAME The member name for this EXEC in the SYSPROC */
/* concatenated data set. The value for EXECNAME */
/* is PAYROLL. */
/* */
/* P1 The value for P1 is either START or STOP. */
/*--*/

Writing the Logic Section

The logic section of a REXX EXEC is a combination of programming elements such as:

Element type For example:

TSO REXX assignment statements

ARG, PARSE, PULL

TSO REXX Control statements

CALL, EXIT, ITERATE

TSO REXX Built-in functions

DATE(), SUBSTR(), WORD()

AutoOPERATOR variables

QIMFID, QSMFID, QJNLSTA
BMC Software, Inc., Confidential and Proprietary Information

3-6 MAINVIEW AutoOPERATOR Advanced Automation Guide

Describing AutoOPERATOR REXX EXECs
and AutoOPERATOR IMFEXEC statements that enable you to write
automation procedures. The concept is identical to programming in other
languages such as COBOL and PL/I, except that REXX EXECs are not
compiled prior to execution.

This chapter describes passing parameters to AutoOPERATOR REXX
EXECs. For complete information about writing REXX EXECs, refer to the
IBM publication TSO/E: REXX/MVS User’s Guide.

Describing AutoOPERATOR REXX EXECs

The following sections describe the different AutoOPERATOR REXX
EXECs based on how they can be invoked in AutoOPERATOR and how
information is passed to the ARG statement.

Rule-Initiated REXX EXECs

An EXEC is Rule-initiated if its name is specified in the EXEC Name/Parms
field of the Rule Processor Action Specification panel of a fired rule.

Refer to the Rule Processor chapters in the MAINVIEW AutoOPERATOR
Basic Automation Guide for more information about writing Rules and how
to write a Rule that schedules an EXEC.

Potential Use

EXECs scheduled by a Rule through the Rule Processor application can
perform automation that cannot be performed by a Rule. For example, a
Rule-initiated EXEC can, based on the text of a message, issue ALERTs,
submit other EXECs, or invoke SYSPROG services. In general, use Rule-
initiated EXECs to perform advanced automation as a result of a message.

Parameters Passed to the EXEC

The individual words of the message that caused a Rule to fire are passed as
input to the EXEC. A word is any character string separated by a blank or a
comma.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 3 Passing Parameters to REXX EXECs in AutoOPERATOR 3-7

Rule-Initiated REXX EXECs
Example of input:

The message:

$HASP103 CMFTEXT BAB031

is an example of a message that can cause a Rule to fire. If the Rule has an
EXEC associated with it, then the words of this message are passed as
parameters to the ARG statement of the EXEC.

Specifying Additional Parameters

From the Rule Processor Action Specification panel, you also can specify
additional parameters you want to send to the EXEC. This is done on the
EXEC/Parms field of any Action Specification panel.

Note that the first parameter specified in this field becomes the first
parameter passed to the EXEC. Subsequent parameters are passed to the
EXEC in the order they were entered.

This means the message ID and any message text will not be passed to the
EXEC. To have the message ID and any message text passed to the EXEC,
the Rule must use the IMFTEXT variable.

Example

The following is an example of a Rule-initiated EXEC scheduled by the Rule
handling the $HASP103 message.

Figure 3-2 Rule-Initiated REXX EXEC Example

/*REXX EXEC */
ARG MSGID SETUP W2 W3
/*--*/
/* DOC GROUP(MVS) FUNC(JES2) CODE(J2) */
/* DOC DISP(YES) AUTHOR(B&B) */
/* DOC DESC(RESPOND TO $HASP103 AND WRITE MESSAGE TO JOURNAL) */
/*--*/

"IMFEXEC MSG ’JOB "SETUP" IS REQUESTING "W2"’"
EXIT

The positional parameters passed to the ARG statement of the Rule-initiated
EXEC are shown in the following table:
BMC Software, Inc., Confidential and Proprietary Information

3-8 MAINVIEW AutoOPERATOR Advanced Automation Guide

ALERT-Initiated REXX EXECs
Describing the Example

This EXEC issues the IMFEXEC MSG command to write a message to the
BBI-SS PAS Journal that, when all the values from the input are substituted
for the ARG statement parameters, translates into:

JOB CMFTEXT IS REQUESTING BAB031

For information about Rule-initiated EXECs and retrieving information from
MVS multi-line WTOs or IMS multi-segment messages, refer to “Rule-
Initiated EXECs Initiated by MVS Multi-Line or Multi-Segment Messages”
on page 4-29.

ALERT-Initiated REXX EXECs

An ALERT-initiated EXEC (also called a follow-up EXEC) is scheduled by a
user from the ALERT Management Facility. When coding the EXEC that
issues the IMFEXEC ALERT command, use the EXEC parameter to specify
the name of the follow-up EXEC.

The EXEC is then scheduled from the ALERT Detail panel of the ALERT
Management Facility by entering any value (up to three characters) in the
RSP column of the panel.

Positional
Parameter

Variable
Name Value Passed Description of Value Passed

1 MSGID $HASP103 Is the message ID of the message that fired the Rule that
calls this EXEC

2 SETUP CMFTEXT Is the name of the job requesting a tape mount

3 W2 BAB031 Is the volume serial number of the tape to be mounted

4 W3 . Is a dummy value used to fill in for the fourth parameter
that was not passed with the message

To read about Refer to

How to actually invoke the EXEC Chapter 3, the “ALERT Management Facility” in the
MAINVIEW AutoOPERATOR Basic Automation Guide

About coding an ALERT with an associated
EXEC

Chapter 6, “Using the IMFEXEC Command Statements” in
this book
BMC Software, Inc., Confidential and Proprietary Information

Chapter 3 Passing Parameters to REXX EXECs in AutoOPERATOR 3-9

ALERT-Initiated REXX EXECs
Potential Use

When an ALERT appears on the DETAIL display, it may require an
advanced automation response. An ALERT-initiated EXEC can handle such a
response. By entering any value (up to three characters) in the RSP column of
the ALERT Detail panel, you can schedule a follow-up EXEC.

One possible use for an ALERT-initiated EXEC is to log messages in the
BBI-SS PAS Journal.

Parameters Passed to the EXEC

When an ALERT-initiated EXEC is coded, the IMFEXEC ALERT . . .
EXEC(ABC) command can schedule the follow-up EXEC with or without
parameters. In this example, the EXEC name is ABC:

• Without optional parameters:

"IMFEXEC ALERT ... EXEC(ABC)"

• With optional parameters (x y z):

"IMFEXEC ALERT ... EXEC(’ABC x y z’)"

If the EXEC has parameters, you must enclose them in single quote
marks (’ ’) with the EXEC name. If you do not, only the EXEC name
will be passed and the parameters will not be passed.

See the two examples of input on page 3-11 for more information.

The first positional parameter passed to the ALERT-initiated EXEC is always
the EXEC name. The characters that you enter in the RSP column ALERT
Detail Display to schedule the EXEC are also passed. However, the position
that those characters have depends on whether or not you use optional
parameters.

Example of input without parameters

For example, the user enters:

DEF

in the RSP column of the ALERT DETAIL DISPLAY panel.

Then, the ARG statement receives data passed in the following way:
BMC Software, Inc., Confidential and Proprietary Information

3-10 MAINVIEW AutoOPERATOR Advanced Automation Guide

ALERT-Initiated REXX EXECs
Example of input with parameters

For example, the user enters:

DEF

in the RSP column of the ALERT DETAIL DISPLAY panel.

Then, the ARG statement receives data passed in the following way:

Example 1: ALERT-Initiated EXEC without Optional Parameters

This example shows an IMFEXEC ALERT statement that schedules an
EXEC named SETJOB without any optional parameters:

"IMFEXEC ALERT KEYSETUP ’SETUP BAB031 . . . JOB 00395’ EXEC(SETJOB)",
 "QUEUE(ABC) PRI(INFO)"

Positional
parameter Value passed Description of value passed

1 EXEC name Is the name of the EXEC

2 DEF (contents of RSP
column)

Is the (up to) three character string the user enters in the
RSP column of the ALERT DETAIL DISPLAY panel to
actually invoke the ALERT

3 through n Text of the ALERT Are the actual words of the ALERT asoociated with the
invoked EXEC

n + 1 The period pads the positional parameter

 Positional
parameter Value passed Description of value passed

1 EXEC name Is the name of the EXEC

2 x Is the first parameter passed to the EXEC

3 y Is the second parameter passed to the EXEC

4 z Is the third parameter passed to the EXEC

5 DEF (contents of RSP
column)

Is the (up to) three character string the user enters in the
RSP column of the ALERT DETAIL DISPLAY panel to
actually invoke the ALERT

6 through n Text of the ALERT Are the actual words of the ALERT associated with the
invoked EXEC

n + 1 The period pads the positional parameter
BMC Software, Inc., Confidential and Proprietary Information

Chapter 3 Passing Parameters to REXX EXECs in AutoOPERATOR 3-11

ALERT-Initiated REXX EXECs
The ALERT generated by this statement looks like the following example:

RSP TIME IND ORIGIN --
___ 10:15 e SYSB SETUP BAB031 . . . JOB 00395

The user enters OUT (or any up to three-character string) in the RSP column.
The positional parameters passed to the ALERT-initiated EXEC in this
example are defined in the following table.

Figure 3-3 ALERT-Initiated REXX EXEC Example 1

/* REXX EXEC */
ARG EXECNAME RSP ATEXT1 ATEXT2 ATEXT3 ATEXT4 ATEXT5 ATEXT6 ATEXT7 .
/*--*/
/* DOC GROUP(MVS) FUNC(JES2) CODE(J2) */
/* DOC DISP(YES) AUTHOR(B&B) */
/* DOC DESC(WRITE MESSAGE FOR SETUP) */
/*--*/

"IMFEXEC MSG ’ALERT "EXECNAME" IS REQUESTING SETUP FOR JOB "ATEXT7"’"
EXIT

Describing the Example

This EXEC issues the IMFEXEC MSG command to write a message to the
BBI-SS PAS Journal that, when all the values from the input are substituted
for, translates into: ALERT SETJOB IS REQUESTING SETUP FOR JOB
00395

Positional
Parameter

Variable
Name

Variable
Passed Description of Variable Passed

1 EXECNAME SETJOB Is the name of the EXEC

2 RSP OUT (contents
of RSP column)

Is the (up to) three character string the user enters in the
RSP column of the ALERT DETAIL DISPLAY panel to
actually invoke the ALERT

3 ATEXT1 SETUP First word of ALERT text

4 ATEXT2 BAB031 Second word

5 ATEXT3 . Third word

6 ATEXT4 . Fourth word

7 ATEXT5 . Fifth word

8 ATEXT6 JOB Sixth word

9 ATEXT7 00395 Is the last word of the ALERT text

10 . . The period pads the positional parameters
BMC Software, Inc., Confidential and Proprietary Information

3-12 MAINVIEW AutoOPERATOR Advanced Automation Guide

ALERT-Initiated REXX EXECs
Example 2: ALERT-Initiated EXEC with Optional Parameters

This example shows an IMFEXEC ALERT statement that schedules an
EXEC named SETJOB with the optional parameter IMMEDIATE:

"IMFEXEC ALERT KEYSETUP ’SETUP BAB031 . . . JOB 00395’",
 "EXEC(’SETJOB IMMEDIATE’)"

The ALERT generated by this statement looks like the following example:

RSP TIME IND ORIGIN ----------------------------------
___ 10:15 e SYSB SETUP BAB031 . . . JOB 00395

The user enters OUT (or any up to three-character string) in the RSP column.
The positional parameters passed to the ALERT-initiated EXEC in this
example are defined in the following table.

Figure 3-4 ALERT-Initiated REXX EXEC Example 2

ARG EXECNAME TIME RSP ATEXT1 ATEXT2 .
/*--*/
/* DOC GROUP(MVS) FUNC(JES2) CODE(J2) DOC DISP(YES) */
/* AUTHOR(B&B) /* DOC DESC(WRITE MESSAGE FOR SETUP & TIME) */
/*--*/

"IMFEXEC MSG
 ’ALERT "EXECNAME" IS REQUESTING SETUP FOR "ATEXT2" AT "TIME"’"
EXIT

Table 3-3 Example of ALERT-initiated EXEC Parameters and Variables

Positional
Parameter

Variable
Name

Variable
Value Description of Variable Value

1 EXECNAME SETJOB Is the name of the EXEC

2 TIME IMMEDIATE Is the optional parameter passed to the EXEC to specify
when the job should be run

3 RSP OUT (contents
of RSP column)

Is the (up to) three-character string the user enters in the
RSP column of the ALERT DETAIL DISPLAY panel to
actually invoke the ALERT

4 ATEXT1 SETUP First word of ALERT text

5 ATEXT2 BAB031 Second word of ALERT text

6 . . The period pads the positional parameters
BMC Software, Inc., Confidential and Proprietary Information

Chapter 3 Passing Parameters to REXX EXECs in AutoOPERATOR 3-13

User-Initiated REXX EXECs
Describing the Example

This EXEC issues the IMFEXEC MSG command to write a message to the
BBI-SS PAS Journal that, when all the values from the input are substituted
for, translates into:

ALERT SETJOB IS REQUESTING SETUP AT IMMEDIATE FOR JOB
00395

User-Initiated REXX EXECs

A user-initiated EXEC (also known as a command-initiated EXEC) is
scheduled when a user enters the EXEC name from the BBI terminal session
(TS) command line with the command prefix of % or 4.

You also can schedule a user-initiated EXEC by issuing a MVS MODIFY
command against a BBI PAS subsystem (BBI-SS PAS); for example:

F SYSB,%EXECB

Finally, you also can use the AutoOPERATOR EXEC Manager application to
issue a user-initiated EXEC. Refer to the MAINVIEW AutoOPERATOR Basic
Automation Guide for more information.

Potential Use

Use user-initiated EXECs when you want to schedule an EXEC from a TS or
an MVS console. The example in this section shows how to schedule an
EXEC named START for execution. This EXEC is used to vary a VTAM
node online.

Parameters Passed to the EXEC

The first positional parameter is the 1- to 8-character EXEC name (in this
case, START). Any of the positional parameters are optional.

Example of input:

To use the EXEC named START, enter the following command on any TS
command line:

%START termid
BMC Software, Inc., Confidential and Proprietary Information

3-14 MAINVIEW AutoOPERATOR Advanced Automation Guide

User-Initiated REXX EXECs
where termid is the name of the VTAM node you specify to bring online.
For example, this termid value could be BS4000. The command would look
like the following example:

%START BS4000

Example

The following shows an example of an EXEC that would be scheduled:

Figure 3-5 User-Initiated REXX EXEC Example

/* REXX EXEC */
ARG START TERMID .
/*--*/
/* DOC GROUP(MVS) FUNC(VTAM) CODE(VT) */
/* DOC DISP(YES) AUTHOR(B&B) */
/* DOC DESC(ACTIVATE THE NODE) */
/*--*/

"IMFEXEC CMD #VARY NET,ACT,ID="TERMID""
EXIT

The positional parameters passed to the ARG statement of the user-initiated
EXEC are shown in the following table:

Describing the Example

In this example, the IMFEXEC CMD statement is used to issue a VTAM
command to vary a terminal online. Refer to “CMD (Issue IMS Command
without Response)” on page 12-96 and “CMD (Issue MVS Commands)” on
page 12-90 for more information about the IMFEXEC CMD command and
MVS commands.

Positional
Parameter Variable Name Value Passed Description of Value Passed

1 START START Is the EXEC name

2 TERMID BS4000 Is the name of the terminal

3 . . The period pads the positional parameters
BMC Software, Inc., Confidential and Proprietary Information

Chapter 3 Passing Parameters to REXX EXECs in AutoOPERATOR 3-15

Time-Initiated REXX EXECs
Time-Initiated REXX EXECs

Time-initiated EXECs are invoked when:

• An EXEC name is specified in the AutoOPERATOR TIMEXEC
application.

These EXECs are invoked by AutoOPERATOR Timer Facility when the
user-defined time condition occurs. Refer to the section called
“TIMEXEC Application” in the MAINVIEW AutoOPERATOR Basic
Automation Guide.

• A BLK request is issued

• An EXEC-initiated EXEC uses the CALLX service

For example, by coding:

"IMFEXEC IMFC SET REQ=CALLX @HOURLY START=06:00:00 STOP=16:00:00
 I=01:00:00"

EXEC @HOURLY will execute every hour, beginning at 6:00 am and
ending at 4:00 pm.

• The @TIMER sample solution is used (refer to the MAINVIEW
AutoOPERATOR Basic Automation Guide for more information).

Potential Use

Any production environment that follows a daily schedule requires specific
jobs to start and stop at the same time every day. Using the AutoOPERATOR
Timer Facility, you can have EXECs automatically scheduled at specific
times to perform automation tasks or react to certain activities.

Parameters Passed to the EXEC

Time-initiated EXECs have specific information passed to the 11 positional
parameters as described in this table.
BMC Software, Inc., Confidential and Proprietary Information

3-16 MAINVIEW AutoOPERATOR Advanced Automation Guide

Time-Initiated REXX EXECs
Table 3-4 Time-Initiated EXEC Parameters and Values

Positional
Parameter Description of Parameter Value

1 EXECNAME - 1 to 8 character name of this EXEC.

2 1- to 8-character target name.

3 AutoOPERATOR for IMS only.
This is the 4-character IMS ID used by AutoOPERATOR for IMS only. This variable must be
coded; however, its value is unpredictable for AutoOPERATOR for CICS and AutoOPERATOR
for MVS.

4 4-character BBI-SS PAS Subsystem identifier.

5 Current Gregorian date in mm/dd/yy format.

6 The time the EXEC is scheduled. The time is in the hours:minutes:seconds format of
hh:mm:ss.
This is the time when the timer-driven request interval expires. In a congested system, the
actual EXEC execution could be delayed because of MVS dispatching priorities.

7 Day of the week is a digit, where 1 is Monday, 2 is Tuesday, 3 is Wednesday, 4 is Thursday,
5 is Friday, 6 is Saturday, and 7 is Sunday.

8 Current Julian date in yyddd format.

9 MAINVIEW AutoOPERATOR for IMS only.
Not used by MAINVIEW AutoOPERATOR for CICS or MVS. This variable must be coded;
however, its value is unpredictable for MAINVIEW AutoOPERATOR for CICS and MAINVIEW
AutoOPERATOR for MVS.
This is the elapsed time that IMS/VS has been active in the total hours:minutes:seconds
format of hhh:mm:ss. This is the elapsed control region job time, not the elapsed time since
the first IMS/VS checkpoint. If IMS/VS is not active, the value is 000:00:00.

10 MAINVIEW AutoOPERATOR for IMS only.
Not used by MAINVIEW AutoOPERATOR for CICS or MVS. This variable must be coded;
however, its value is unpredictable for MAINVIEW AutoOPERATOR for CICS and MAINVIEW
AutoOPERATOR for MVS.
The IMS/VS restart type, as follows:

ERE Emergency restart

WARM Warm restart

COLD Cold restart

INACT IMS/VS is not active. This value is also passed during:

• IMS/VS initialization until the first checkpoint is taken
• IMS/VS termination after the shutdown checkpoint is issued
It remains INACT until IMS/VS restarts and the first checkpoint is taken.

11 MAINVIEW AutoOPERATOR for IMS only.
Not used by MAINVIEW AutoOPERATOR for CICS or MVS. This variable must be coded;
however, its value is unpredictable for MAINVIEW AutoOPERATOR for CICS and MAINVIEW
AutoOPERATOR for MVS.
A 1- to 5-digit number for the numer of times the EXEC has been invoked. The P10 value is
reset to 1 every time the P9 status changes.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 3 Passing Parameters to REXX EXECs in AutoOPERATOR 3-17

Time-Initiated REXX EXECs
It is not always necessary to identify all 11 parameters on the PROC
statement. For example, an EXEC may only require positional parameter
eight (the current Julian date). In this case only the first eight parameters
need to be coded on the PROC statement. The required PROC would be:

ARG SUBJOB P1 P2 P3 P4 P5 P6 P7 P8

Example

Figure 3-6 Time-Initiated REXX EXEC Example

/* REXX EXEC */
ARG EXECNAME
 /*---*/
 /*EXEC Description: This sample EXEC displays the status of your*/
 /* system. */
 /*---*/
 /*Positional Parameter Count: */
 /* */
 /*11 The total number of ARG parameters. This value will*/
 /* always be 11 for a time-initiated EXEC. */
 /* */
 /*Symbolic Parameter Definitions: */
 /* */
 /*SSTATUS The BBPROC member name for this EXEC. */
 /* */
 /*---*/

"IMFEXEC CMD .D V,ALL" /* Displays all shared variables */
"IMFEXEC CMD .D L,ALL" /* Displays of all BBI-SS PAS/BBI-SS PAS */
 Links */
"IMFEXEC CMD .D R" /* Displays remote users */
"IMFEXEC CMD .D A" /* Displays ACTIVE STATUS */
EXIT

The positional parameters passed to the ARG statement of the time-initiated
EXEC are shown in the following table:

Positional
Parameter Variable Name Value Passed Description of Value Passed

1 EXECNAME SSTATUS Is the name of the EXEC invoked by the
timer facility
BMC Software, Inc., Confidential and Proprietary Information

3-18 MAINVIEW AutoOPERATOR Advanced Automation Guide

EXEC-Initiated REXX EXECs
Describing the Example

This EXEC uses the IMFEXEC CMD command to issue various BBI control
commands to be logged to the BBI -SS PAS Journal. The ARG statement is
written as the first REXX statement of the EXEC named SSTATUS by
specifying:

ARG EXECNAME

where:

• ARG instructs REXX to process the arguments passed to this REXX
EXEC

• EXECNAME is a variable which contains the name of the EXEC

There is only one positional parameter in this statement, the variable
containing the EXEC name. The remaining 10 positional parameters are
ignored.

This time-initiated EXEC is scheduled to take a snapshot of the BBI
environment. The EXEC uses only one input variable for this task and it
issues four BBI control commands so the output is recorded in the BBI-SS
PAS Journal. This allows you to review the data.

EXEC-Initiated REXX EXECs

An EXEC-initiated EXEC is scheduled when the IMFEXEC SELECT
command is coded, specifying the EXEC parameter. The EXEC parameter
names the EXEC to be scheduled along with any parameters; for example:

"IMFEXEC SELECT . . . EXEC(execname)"

where execname is the name of any EXEC to be scheduled.

Potential Use

Use an EXEC-initiated EXEC when you want to:

• Invoke a common EXEC that might be used by several other EXECs

• Schedule another EXEC and have it execute asynchronously
BMC Software, Inc., Confidential and Proprietary Information

Chapter 3 Passing Parameters to REXX EXECs in AutoOPERATOR 3-19

EXEC-Initiated REXX EXECs
EXEC-initiated EXECs can be scheduled to execute either
synchronously or asynchronously by the calling EXEC. For more
information, see“Invoking EXECs Synchronously with IMFEXEC
SELECT(EXEC) WAIT(YES)” on page 5-8 .

Parameters Passed to the EXEC

The first positional parameter is the 1- to 8-character name of the EXEC. Any
following positional parameter are optional.

Example of input:

The command:

"IMFEXEC SELECT EXEC(START BS4000)"

schedules the EXEC called START for execution. An optional parameter
containing the value BS4000 is passed to START as input.

Example

This example shows the calling EXEC that schedules the called EXEC
named START:

/* REXX EXEC */
/*--*/
/* DOC GROUP(MVS) FUNC(VTAM) CODE(VT) */
/* DOC DISP(YES) AUTHOR(B&B) */
/* DOC DESC(CALL ACTIVATE EXEC) */
/*--*/

"IMFEXEC SELECT EXEC(START BS4000)"
EXIT
BMC Software, Inc., Confidential and Proprietary Information

3-20 MAINVIEW AutoOPERATOR Advanced Automation Guide

EXEC-Initiated REXX EXECs
This example shows the called EXEC:

Figure 3-7 EXEC-Initiated REXX EXEC Example

/* REXX EXEC */
ARG START TERMID .
/*--*/
/* DOC GROUP(MVS) FUNC(VTAM) CODE(VT) */
/* DOC DISP(YES) AUTHOR(B&B) */
/* DOC DESC(ACTIVATE THE NODE) */
/*--*/

"IMFEXEC CMD #VARY NET,ACT,ID="TERMID""
EXIT

The positional parameters passed to the EXEC-initiated EXEC are shown in
the following table:

Describing the Example

The called EXEC in this example receives a parameter from the calling
EXEC (BS4000) and uses that value to vary a VTAM node active with the
IMFEXEC CMD command. Refer to “CMD (Issue MVS Commands)” on
page 12-90 for more information about the IMFEXEC CMD statement and
MVS commands.

Positional
Parameter

Variable
Name

Value
Passed Description of Value Passed

1 START START Is the name of the EXEC

2 TERMID BS4000 Is the name of the terminal to be started online

3 . . The period pads the positional parameters
BMC Software, Inc., Confidential and Proprietary Information

Chapter 3 Passing Parameters to REXX EXECs in AutoOPERATOR 3-21

Externally Initiated REXX EXECs
Externally Initiated REXX EXECs

Externally initiated EXECs are scheduled by:

• A job step that executes the IMFSUBEX program

• A user-written program

• A TSO user The EXEC that IMFSUBEX schedules is called an
externally initiated EXEC.

Potential Use

There are many instances where full automation requires the completion of a
task that is not an EXEC and is running outside of the BBI-SS PAS. A
database backup is one example. When the backup completes, you can use an
externally initiated EXEC to notify AutoOPERATOR to schedule any further
actions.

Two possible ways to do this are through writing a Rule and through
IMFSUBEX. If you use the Rule Processor application to write Rules, then:

Step 1 Create a message with a unique message-ID

Step 2 Send the message to the operator's console

Step 3 Create a Rule to process the message

If you use the IMFSUBEX facility, you can directly schedule an EXEC to
take subsequent automation actions. For more information for how to invoke
externally initiated EXECs, refer to “Invoking REXX EXECs from Outside
of AutoOPERATOR with IMFSUBEX” on page 6-9.
BMC Software, Inc., Confidential and Proprietary Information

3-22 MAINVIEW AutoOPERATOR Advanced Automation Guide

Externally Initiated REXX EXECs
Parameters Passed to the EXEC

The first positional parameter is the 1- to 8-character name of the EXEC. Any
following positional parameter are optional.

Example of input:

The following JCL shows how the subroutine IMFSUBEX schedules an
EXEC named BACKDONE for execution.

//STEPX EXEC PGM=IMFSUBEX,
// PARM=’SS(SSA1) EXEC(BACKDONE SYST1)’

Example

The following EXEC is scheduled:

Figure 3-8 Externally Initiated REXX EXEC Example

/* REXX EXEC */
ARG BACKDONE V1 .
/*--*/
/* DOC GROUP(MVS) FUNC(BKUP) CODE(BK) */
/* DOC DISP(YES) AUTHOR(B&B) */
/* DOC DESC(SEND NOTIFY/LOG FOR A SUCCESSFUL BACKUP) */
/*--*/

"IMFEXEC CMD #SE ’VOLUME "V1" SUCCESSFULLY
DUMPED’,LOGON,USER=(SYSP1,SYSP2)"
"IMFEXEC MSG ’VOLUME "V1" SUCCESSFULLY DUMPED’"
EXIT

The positional parameters passed to the EXEC-initiated EXEC are shown in
the following table:

Positional
Parameter Variable Name Value Passed Description of Value Passed

1 BACKDONE BACKDONE Is the name of the EXEC invoked

2 V1 SYST1 Is the name of the volume serial number of a
DASD

3 . . The period pads the positional parameters
BMC Software, Inc., Confidential and Proprietary Information

Chapter 3 Passing Parameters to REXX EXECs in AutoOPERATOR 3-23

End-of-Memory-Initiated REXX EXEC
Describing the Example

The EXEC named BACKDONE is scheduled in a target subsystem called
SSA1. A single parameter is passed (SYST1) which is a DASD volume serial
number. The BACKDONE EXEC receives a volume serial number of a
DASD from the second positional parameter to IMFSUBEX.

The BACKDONE EXEC first sends a message to two TSO users, SYSP1 and
SYSP2, informing them that the volume backup has been successful and then
places a message in the BBI-SS PAS Journal recording a successful
operation.

End-of-Memory-Initiated REXX EXEC

Use the End-of-Memory EXEC to ensure that critical address spaces do not
terminate unnoticed.

Potential Use

Normally, address space termination can be monitored using standard MVS
and JES messages. However, there are situations when monitoring based on
these messages is not sufficient because an address space may terminate
without producing the expected messages. For example, the expected
termination messages may not be produced if the MVS FORCE or
SYSPROG EXIT command is used or when an initiator abends.

The End-of-Memory EXEC allows AutoOPERATOR to monitor address
space termination regardless of how the address space is terminated. This
EXEC is scheduled for the following things when the associated events
occur:

Batch jobsOnly when the initiator terminates
TSO usersWhen any TSO user is terminated
Started tasksWhen any started task is terminated

There is only one End-of-Memory EXEC for each AutoOPERATOR
subsystem. Each time one of the above mentioned events occurs,
AutoOPERATOR automatically schedules an EXEC named IMFEOM if it
exists in the SYSPROC concatenation.
BMC Software, Inc., Confidential and Proprietary Information

3-24 MAINVIEW AutoOPERATOR Advanced Automation Guide

End-of-Memory-Initiated REXX EXEC
Parameters Passed to the EXEC

Two parameters are passed to the End-of-Memory EXEC.

• The first parameter contains the fixed string of *EOM*

• The second parameter contains a character string which can have one of
two values:

Parameter value Description

NORMAL Indicates normal address space termination

ABNORMAL Indicates address space was terminated by passing it to RTM

This may happen when using the SYSPROG EXIT command or
the MVS FORCE command. This is not an indication that the
address space abended with a system or user abend code.

Example

This first example shows an EXEC called STRT that is invoked by a Rule (a
Rule-initiated EXEC). The Rule is fired when the JES2 message $HASP373
is issued for jobname PRODSTC: $HASP373 indicates that the job has
started.

/*REXX EXEC */
/*--*/
/* THIS EXEC IS DRIVEN FROM JES2 MESSAGE, $HASP373, FOR STC */
/* PRODSTC ONLY */
/* */
/* EXEC DESCRIPTION: SET VARIABLE "PRODSTKN" TO STOKEN OF PRODSTC */
/*--*/
PRODSTKN = IMFSTOKN
"IMFEXEC VPUT PRODSTKN"

The second EXEC, IMFEOM, is automatically scheduled when any started
task or TSO address space terminates or when a batch initiator
abends.Describing the Example
BMC Software, Inc., Confidential and Proprietary Information

Chapter 3 Passing Parameters to REXX EXECs in AutoOPERATOR 3-25

End-of-Memory-Initiated REXX EXEC
Figure 3-9 End-of-Memory—Initiated EXECs Example

/* REXX */
ARG IMFEOM STATUS .
/*--*/
/* THIS EXEC IS DRIVEN FROM END OF MEMORY EXIT */
/* */
/* EXEC DESCRIPTION: DETERMINE IF ADDRESS SPACE TERMINATING IS */
/* "PRODSTC". IF SO, INFORM THE OPERATOR. */
/*--*/

"IMFEXEC VGET PRODSTKN"
IF IMFSTOKN = PRODSTKN THEN DO
 PRODSTKN =’’
 "IMFEXEC VPUT PRODSTKN"
 IF STATUS = ABNORMAL THEN ,
 "IMFEXEC WTO 'PRODSTC ENDED ABNORMALLY'"
END

When the STRT EXEC is scheduled, the local variable IMFSTOKN contains
an identifier that uniquely identifies the PRODSTC started task. Since this
variable only exists for the life of the EXEC, STRT saves the IMFSTOKN
value in the shared variable pool so that it can be used subsequently by the
IMFEOM EXEC.

Warning! If this procedure will be used for more than one address space,
you should use a variable name other than IMFSTOKN in the
shared variable pool or else the value IMFSTOKN might be
overridden by the other procedures.

When the IMFEOM EXEC is scheduled, IMFSTOKN refers to the address
space that is being terminated. The IMFEOM EXEC compares IMFSTOKN
to the PRODSTKN value saved previously by the EXEC named STRT. If the
values do not match, IMFEOM exits because the address space that is
terminating is not one that is being monitored. If the values do match and the
parameter passed to IMFEOM indicates abnormal termination, then a WTO
(write-to-operator) is issued to notify the operator.

Refer to “TSO Variables Supplied by AutoOPERATOR” on page 4-7 for
more information about AutoOPERATOR-supplied variables.
BMC Software, Inc., Confidential and Proprietary Information

3-26 MAINVIEW AutoOPERATOR Advanced Automation Guide

30
Chapter 4 Using Variables in REXX
EXECs

This chapter discusses:

• Variables and variable pools available to AutoOPERATOR REXX
EXECs

• Manipulating information between the variable pools

Overview

Complex EXECs must be able to do much more than issue commands and
return control to their callers. An EXEC must be able to request information
from AutoOPERATOR (and other products), compare the information,
compare the time elapsed since the last observation, and effect changes that
other EXECs or products carry out.

This type of logic requires the ability to save information, either temporarily
or permanently, in a simple manner so that it can be accessed later by the
same EXEC or other EXECs.

To retain this information for EXECs, AutoOPERATOR provides four kinds
of variables and variable pools.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 4 Using Variables in REXX EXECs 4-1

Overview
Variable Pool Name Description

TSO variables Exist for the life of the EXEC.
This chapter lists:
• AutoOPERATOR–supplied TSO variables
• Modifiable TSO variables
• Non-modifiable TSO variables

LOCAL variables LOCAL variables are stored in a pool that can be accessed only by the
current EXEC and other EXECs (using IMFEXEC SELECT WAIT(YES)).
AutoOPERATOR passes information to an EXEC in this pool. It is also used
by AOAnywhere when sharing variables with an invoking EXEC. The LOCAL
variable pool is freed when the EXEC ends and its contents are lost.

Two types of GLOBAL
variable pools: SHARED and
PROFILE

Can be saved for later executions of the same EXEC or other EXECs.
The use of the expression “GLOBAL variables” in this book refers to both
SHARED and PROFILE variables.

SHARED variables
SHARED variables are stored in a
pool that is accessible to all EXECs
in the BBI-SS PAS . They can be
read, modified, created and deleted
by any number of EXECs or Rules.
Since EXECs can access them
simultaneously, their access should
be serialized (see IMFEXEC VENQ
and VDEQ). These variables exist in
storage beyond the life of the EXEC
that created them.
AutoOPERATOR creates a number
of SHARED variables that contain
system-specific information.
SHARED variables are accessible to
the Rules Processor and remain in
memory when the subsystem is
terminated. However, they are lost
across IPLs or when a subsystem is
restarted with the VPOOL=RESET
option.
This chapter lists the
AutoOPERATOR-supplied variables.

PROFILE variables
PROFILE variables are similar to
SHARED variables with the
exception that they are persistent
across IPLs and their contents are
never lost unless explicitly deleted.
PROFILE variables are not
accessable from Rules.

Note: Variable names must be at least 1 and not more than 32 characters in length. The contents of any
variable cannot exceed 256 characters.
BMC Software, Inc., Confidential and Proprietary Information

4-2 MAINVIEW AutoOPERATOR Advanced Automation Guide

Overview
AutoOPERATOR also provides four IMFEXEC commands for defining,
saving, deleting, and retrieving variables using the different variable pools:

VDCL Defines map lists for variables

VPUT Save variables to a pool

VPUTL Saves long variables (up to 32k and 30 characters long) to a pool

VGET Retrieve variables from a pool

VGETL Retrieves long variables (up to 32k and 30 characters long) to a
pool

VDEL Remove variables from pools

VDELL Removes long variables (up to 32k and 30 characters long) to a
pool

Although three of these commands are similar to three ISPF Dialog
commands, they are not identical. Refer to Chapter 12, “Using the IMFEXEC
Statements” for coding details and carefully review the differences before
using them.

LOCAL, SHARED and PROFILE variables (in this order) impose a cost to
processing overhead. This means that the system uses more resources to
preserve the contents of a PROFILE variable than for a LOCAL variable.

LOCAL, SHARED and PROFILE pool variables each come in two flavors:
long and short. Short variables are limited to 255 characters in length and
their names to 32 characters long. You cannot manipulate a variable with
longer content using the IMFEXEC VGET/VPUT/VDEL statements.

Long variables can be up to 32K in length and have a variable name length
up to 30 characters. These variables are manipulated using the
VGETL/VPUTL/VDELL IMFEXEC statements. Long and short variables
are completely independent from each other. A variable that has been set with
the VPUT statement cannot be read with the VGETL statements.

Long variables impose greater processing overhead than short variables. If
your code, for example, has to remember only the names of persons, you
should always choose a short variable. If, however, a variable can foreseeably
grow in length beyond the 255 character limit (say, you might want to
concatenation hundreds of volsers into one variable) then you should use the
long variable format.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 4 Using Variables in REXX EXECs 4-3

Overview
In addition:

• REXX EXECs cannot use any variables that have not been explicitly
retrieved into the function pool using IMFEXEC VGET(L) statements.

• A variable with the same name but of different type (long or short) or in
different pools (LOCAL/SHARED/PROFILE) can contain completely
separate values.

• A LONG variable (set with the VPUTL statement) cannot be retrieved
with a short variable operation (VGET) even if the contents of the
explicit LONG variable does not exceed the 255 character limit.

REXX EXEC example:

Fred=’This is a test’
"IMFEXEC VPUT FRED"
"IMFEXEC VGETL FRED"

CLIST EXEC example:

SET &FRED = &STR(This is a test)
IMFEXEC VPUT FRED
IMFEXEC VGETL FRED

The REXX EXEC statements yield the following result:

Fred=’My name is Fred’
"IMFEXEC VPUT FRED"

Fred="My name is Flintstone"
"IMFEXEC VPUTL FRED"

The CLIST EXEC statements yield the following result:

SET &FRED = &STR(My name is Fred)
IMFEXEC VPUT FRED

SET &FRED = &STR(My name is Flintstone)
IMFEXEC VPUTL FRED

In this case, the variable Fred exists both as a long and a short variable, with
different contents.
BMC Software, Inc., Confidential and Proprietary Information

4-4 MAINVIEW AutoOPERATOR Advanced Automation Guide

Overview
The following table lists where you can find more information about variable
pools in this chapter.

To read more about... See page...

TSO pools 4-6

Using TSO modifiable variables 4-13

Using TSO non-modifiable variables 4-15

LOCAL pools 4-17

SHARED pools 4-18

PROFILE pools 4-21

Saving data to a pool 4-23

Retrieving data from a pool 4-25

Sharing variables between EXECs 4-27
BMC Software, Inc., Confidential and Proprietary Information

Chapter 4 Using Variables in REXX EXECs 4-5

Using a TSO Variable Pool
Using a TSO Variable Pool

A TSO variable pool is created when an EXEC starts and is deleted when the
EXEC ends. The variables in the TSO variable pool can be created in any one
of two ways:

• Assigning a variable:

For example, the following statement creates a TSO variable I with a
value of 1 in the pool:

I=1

For a CLIST EXEC, use the TSO CLIST command SET; for example,
the following command creates a variable called &N in the TSO pool:

SET &N=1

• Using IMFEXEC VGET commands

To access a variable from the LOCAL, SHARED, or PROFILE pools,
you must use the IMFEXEC VGET command in the EXEC and move the
variable into the TSO pool. The REXX EXEC can perform operations on
the value of the variable only when it is in the TSO variable pool. Refer
to “VGET” on page 12-187 for information on coding an IMFEXEC
VGET statement.

TSO variables also exist as:

• AutoOPERATOR-supplied variables

• TSO-supplied modifiable and non-modifiable control variables

• Variables that are substituted into the positional parameters on a REXX
ARG statement

Refer to “Passing Data” on page 3-2 for more information about the
ARG statement.

The following sections list the AutoOPERATOR-supplied variables and the
modifiable and non-modifiable variables supplied by TSO.
BMC Software, Inc., Confidential and Proprietary Information

4-6 MAINVIEW AutoOPERATOR Advanced Automation Guide

Using a TSO Variable Pool
TSO Variables Supplied by AutoOPERATOR

The following table lists the TSO variables that are provided by
AutoOPERATOR. When using these variables in CLIST EXECs, the
variable must be preceded with an ampersand (&). For example,
IMFACCTG should be used as &IMFACCTG.

Table 4-1 Variables Supplied by AutoOPERATOR (Part 1 of 7)

Variable Name Description

Applicable
specifically for
which EXEC
type

IMFACCTG Contains all accounting fields for a particular event. The accounting
field values are separated by blanks. Maximum length is 142.

Rule-initiated
EXECs only

IMFALID The alarm ID associated with an alarm created by MAINVIEW Alarm
Manager.

Rule-initiated
EXECs only

IMFALPRI The user-assigned priority of the alarm. Possible values are:

1 Critical

2 Major

3 Minor

4 Warning

5 Informational

6 Clearing

Rule-initiated
EXECs only

IMFALQID The name of the queue to which the alarm was assigned. Rule-initiated
EXECs only

IMFALRM Contains either Y (sound an alarm) or N (do not sound an alarm). Rule-initiated
EXECs only

IMFCC The condition code set for each IMFEXEC statement.
IMFCC = 00 Normal completion.
IMFCC = 04 Warning condition, not necessarily an error.
IMFCC = 08 Exception condition or command not found.
IMFCC = 12 Error condition. Did not complete operation.
IMFCC = 16 Error condition.
IMFCC = 20 Severe error condition.
Refer to the specific IMFEXEC statement for the exact codes.

All EXEC types

IMFCNTXT The name of the context of the alarm. Rule-initiated
EXECs only

IMFCONID Console ID of the message, if message was issued for a specific
console. Valid only for messages captured through the Rule
Processor application.

Rule-initiated
EXECs only
BMC Software, Inc., Confidential and Proprietary Information

Chapter 4 Using Variables in REXX EXECs 4-7

Using a TSO Variable Pool
IMFCONNM Console name to which the WTO was issued. Valid only for MVS
SP4 and above.
IMFCONNM may be used to identify the origin of an MVS command.
The contents of the variable (by origin) are:

Origin IMFCONNM Value

Rule Internal

SDSF TSO user ID that issued the command

Console Console Name where the command was
issued

Rule-initiated
EXECs only

IMFDAY Three-character day of the week: MON, TUE, WED, THU, FRI, SAT,
SUN.

All EXEC types

IMFDDNAM The DDNAME specified by the user to generate an external events
(EXT event type). EXT events are generated by using the SUBSYS=
parameter on a DD statement in JCL. Refer to “EXT Events” in the
MAINVIEW AutoOPERATOR Basic Automation Guide for more
information about EXT events.

Rule-initiated
EXECs only

IMFDOMID The DOM ID associated with a WTO that initiated an EXEC. Rule-initiated
EXECs only

IMFEID The EXEC identification number, 1 to 99999, assigned to each
execution by the EXEC manager.
The EXEC Management application will not assign the same number
to two EXECs in the running or deferred queues, except an EXEC
selected with WAIT=(YES) has the same IMFEID as the calling
EXEC.

All EXEC types

IMFENAME Name of EXEC. All EXEC types

IMFEROUT A list of routing codes that were assigned to the WTO that triggered
the EXEC, such as 1 2 5 9. This variable is defined only for
EXECs initiated as a result of a WTO. IMFEROUT supports return
codes up to 128.

Rule-initiated
EXECs only

Table 4-1 Variables Supplied by AutoOPERATOR (Part 2 of 7)

Variable Name Description

Applicable
specifically for
which EXEC
type
BMC Software, Inc., Confidential and Proprietary Information

4-8 MAINVIEW AutoOPERATOR Advanced Automation Guide

Using a TSO Variable Pool
IMFETYPE The event type that caused the Rule to fire. If a Rule invokes an
EXEC, IMFETYPE contains the value from the Rule that invoked the
EXEC. Possible values for IMFETYPE are as follows:

• MSG
• CICS
• CMD
• JRNL
• IMS
• ALRT
• DB2
• TIME
• ALRM
• EXT
• VAR
• MQS
• JES3
For more information about these event types, refer to “Describing
Events” in the MAINVIEW AutoOPERATOR Basic Automation Guide.

Rule-initiated
EXECs only

IMFEVFRD The number of Rules that have fired for a specific event. Rule-initiated
EXECs only

IMFGROUP The RACF group ID for the address space that issued the message.
The group ID is taken from the GROUP= parameter on the job card.

Rule-initiated
EXECs only

IMFJCLAS Job class name from the job card of the batch job that has generated
the message.

Rule-initiated
EXECs only

IMFJNUM The JES job number of the job, STC, or TSU that issued the
message. It is a fixed length five-digit or a variable length value
depending on the setting of the IMFJNUM option in member
AAOPRMxx. IMFJNUM can also contain blanks (one or five
characters as appropriate) for WTOs that are issued by non-JES
tasks, such as a STC started under MSTR.
When IMFJNUM=5 (the default setting) and the job number is greater
than 99,999 (for example, T0100000, S0999999, etc.) are
encountered, IMFJNUM will be null (zero length).

Rule-initiated
EXECs only

IMFJTYPE Type of job issuing message:

J Batch Job

T TSO User

S Started Task

Rule-initiated
EXECs only

IMFLPROD The name of the product associated with the alarm. Rule-initiated
EXECs only

IMFLTYPE A literal value associated with the alarm; possible values can be
START or STOP.

Rule-initiated
EXECs only

Table 4-1 Variables Supplied by AutoOPERATOR (Part 3 of 7)

Variable Name Description

Applicable
specifically for
which EXEC
type
BMC Software, Inc., Confidential and Proprietary Information

Chapter 4 Using Variables in REXX EXECs 4-9

Using a TSO Variable Pool
IMFLUSER The user-specified user ID associated with the alarm. Rule-initiated
EXECs only

IMFMPFAU Contains the value of a message from the MPF AUTO keyword.
Use this variable to determine the value of the MPF AUTO keyword
for a message.

Rule-initiated
EXECs only

IMFMPFSP Contains the value of a message from the MPF SUP keyword.
Use this variable to determine the value of the MPF SUP keyword for
a message.

Rule-initiated
EXECs only

IMFMSTYP Contains a 2-character variable for the message type. This variable
is only for the CMD and MSG event types. Valid values for the first
character are:

N A regular WTO

W A regular WTOR

M A major line of a multi-line WTO (MLWTO)

Valid values for the second character are:

C Command

R Command response

Rule-initiated
EXECs only

IMFNOL Number of lines in WTOR that caused the EXEC to be invoked or the
number of lines returned from a service.
This value is limited to 9999 lines for Rule-initiated EXECs and for
data returned by IMFEXEC CMD with response.

All EXEC types

IMFOASID Originating Address Space ID (ASID) of the message. For IMFEOM,
it is set to the ASID that is being terminated. For ORIGIN=JRNL, it is
set to the subsystem ASID name.

Rule-initiated
EXECs only

IMFODATE Date when the message or alarm was issued. Valid only for
messages captured through the Rule Processor.
The date format is in Julian calendar format; for example: 95.100,
where:

95 Are the last two digits of the year 1995.

100 Is the 100th day of the year. In a non-leap-
year, this is equal to March 10.

Rule-initiated
EXECs only

IMFODESC A list of descriptor codes assigned to the WTO that triggered the
EXEC, such as 2 11. This variable is defined only for EXECs initiated
as a result of a WTO.

Rule-initiated
EXECs only

Table 4-1 Variables Supplied by AutoOPERATOR (Part 4 of 7)

Variable Name Description

Applicable
specifically for
which EXEC
type
BMC Software, Inc., Confidential and Proprietary Information

4-10 MAINVIEW AutoOPERATOR Advanced Automation Guide

Using a TSO Variable Pool
IMFOEXEC Identifies the originating EXEC if the EXEC was scheduled by
another EXEC using the IMFEXEC SELECT EXEC. This variable is
not set if the EXEC is scheduled by some other means.

IMFEXEC
SELECT EXEC
initiated

IMFOJOB For WTOs, IMFOJOB contains the job or started task that issued the
WTO.
For CICS messages, IMFOJOB contains the CICS region name that
the subsystem issued the message for, which is useful when
monitoring multiple CICS regions with one BBI-SS PAS .
For DB2 messages, IMFOJOB contains the DB2 region name that
the subsystem issued the message for, which is useful when
monitoring multiple DB2 regions with one BBI-SS PAS.
For IMS messages, IMFOJOB contains:
• The IMS job name for IMS MTO messages
• The IMS job name for commands (and their responses) entered

from AutoOPERATOR
• The originating LTERM for commands (and their responses)

entered from an IMS LTERM
For BBI-SS PAS Journal messages issued by an EXEC, IMFOJOB
contains the user ID of the person who invoked the EXEC.
For Journal messages issued by MAINVIEW for DB2, IMFOJOB
contains the name of the DB2 Region for which the message was
issued.
For Time-initiated EXECs, IMFOJOB contains the user ID associated
with that EXEC. This may be the user ID passed on the command or
it may default to the value of the AUTOID keyword specified in
BBPARM member BBIISP00.

All EXEC types

IMFXOJOB Contains the name of the original job or started task that requested
the WTO to be issued by another address space.
The contents of IMFXOJOB are only meaningful if the WTO is issued
by another address space, otherwise its contents are identical to
IMFOJOB.

All EXEC types
initiated by a
MSG type rule

IMFOQID CICS transient data queue name if source of message is CICSTD. Rule-initiated
EXECs only

IMFORGN Origin of EXEC-Job name/USERID causing EXEC to be invoked.
For EXECs triggered by the Rule Processor, IMFORGN contains the
BBI-SS PAS ID. This is so that EXECs invoked on remote systems
that are triggered by message filters on the local system can use
authorized services, such as SYSPROG services.
Security checking is done against a BBPARM member in the remote
system with the name of the BBI-SS PAS ID. See “Determining the
Origin of a Command or EXEC” on page 6-7 for a discussion about
using IMFORGN to determine the origin of an EXEC across BBI-SS
PASs.

All EXEC types

IMFORGSS The BBI subsystem ID of the BBI-SS PAS that originated an EXEC.
If originated locally, IMFORGSS is the same as QIMFID.
See “Determining the Origin of a Command or EXEC” on page 6-7
for a discussion about using IMFORGN to determine the origin of an
EXEC across BBI-SS PASs.

All EXEC types

Table 4-1 Variables Supplied by AutoOPERATOR (Part 5 of 7)

Variable Name Description

Applicable
specifically for
which EXEC
type
BMC Software, Inc., Confidential and Proprietary Information

Chapter 4 Using Variables in REXX EXECs 4-11

Using a TSO Variable Pool
IMFOROUT A list of routing codes that were assigned to the WTO that triggered
the EXEC, such as 1 2 5 9. This variable is defined only for
EXECs initiated as a result of a WTO. IMFOROUT supports return
codes up to 16.

Rule-initiated
EXECs only

IMFOTIME Time when the message was issued. Valid only for messages (also
known as events) captured through the Rule Processor.
The valid form of the variable is hh:mm:ss for all Rule event types
except for the MSG event type. For MSG events, the valid form of the
variable is hh.mm.ss.
For the ALRM events, the time represents the time the exception
occurred.

Rule-initiated
EXECs only

IMFPCMD The PCMD associated with the alarm. Rule-initiated
EXECs only

IMFPOST A 1 to 255 character code received from an EXEC that issues the
IMFEXEC POST command against an ECB with the same name that
the current EXEC is waiting on.

All EXECs

IMFPRIO Contains the dispatching priority of the currently running EXEC after
the IMFEXEC CHAP command has been issued.

All EXECs

IMFRC The return code set by a called EXEC with WAIT(YES) or the return
code set by a non-AutoOPERATOR command or program.
The return code set by a non-AutoOPERATOR command (such as
ALLOCATE or FREE) will be meaningful only if the command has
executed successfully and &IMFCC is returned as 0.
 Refer to “Understanding Completion Codes for EXEC-Initiated
EXECs with WAIT(YES) and User-Written Programs” on page 12-
143 for a more detailed discussion.

EXEC-initiated
EXECs only

IMFREPLY Reply ID of the WTOR message. Valid only for messages captured
through the Rule Processor.

Rule-initiated
EXECs only

IMFRLFRD The number of times a Rule was fired. Rule-initiated
EXECs only

IMFRLID The Rule identifier that fired an EXEC. Rule-initiated
EXECs only

IMFRLMAT The number of times the Rules search criteria was matched. Rule-initiated
EXECs only

IMFRLSET The name of the Rule Set the Rule belongs to. Rule-initiated
EXECs only

IMFRLSTA The Rule status:

TEST Indicates that the status of the Rule that
invoked the EXEC is in an TEST state.

ACTIVE Indicates that the status of the Rule that
invoked the EXEC is in ACTIVE state.

Rule-initiated
EXECs only

Table 4-1 Variables Supplied by AutoOPERATOR (Part 6 of 7)

Variable Name Description

Applicable
specifically for
which EXEC
type
BMC Software, Inc., Confidential and Proprietary Information

4-12 MAINVIEW AutoOPERATOR Advanced Automation Guide

Using a TSO Variable Pool
TSO Modifiable Control Variables (REXX EXECs)

AutoOPERATOR REXX EXECs support the following special REXX
variables that are modifiable.

IMFRUSER The RACF user ID for the address space that issued the message.
The user ID is taken from the USER= parameter on the job card.

Rule-initiated
EXECs only

IMFSCOPE The name of the scope associated with the alarm. Rule-initiated
EXECs only

IMFSTEP The step name that triggered the Rule. Rule-initiated
EXECs only

IMFSTOKN The Address Space STOKEN. This name is unique for the life of the
IPL.

Rule-initiated
EXECs or
End-of-Memory
initiated EXECs

IMFSYSID Originating job name
For CICS messages, IMFSYSID contains the BBI started task name.

Rule-initiated
EXECs only

IMFTEXT The character text that caused the EXEC to be scheduled. All EXEC types

IMFTOKEN Token ID of the message. Same as hardcopy ID. Used to attach
MLWTO Minor/Major Lines. Valid only for messages captured
through the Rule Processor.

Rule-initiated
EXECs only

IMFVIEW The name of the view associated with the alarm. Rule-initiated
EXECs only

IMFWTDOM The DOM ID associated with a WTO issued by IMFEXEC WTO
command.

All EXEC types

 IMFWTCON Created when a reply is successfully received. The eight-character
name of the console from which the reply to the WTOR was entered.
One of the possible uses for the IMFWTCON variable is that it
enables you to direct reply WTOs specifically to the console where
the user entered the reply to this WTOR.

Note: These variables are carried over to the TSO pool created for an EXEC called using the IMFEXEC
SELECT command with parameter WAIT(YES) specified.
See “Invoking EXECs Synchronously with IMFEXEC SELECT(EXEC) WAIT(YES)” on page 5-8 for more
information about EXEC-initiated EXECs executing within the same thread.

Table 4-1 Variables Supplied by AutoOPERATOR (Part 7 of 7)

Variable Name Description

Applicable
specifically for
which EXEC
type
BMC Software, Inc., Confidential and Proprietary Information

Chapter 4 Using Variables in REXX EXECs 4-13

Using a TSO Variable Pool
TSO Modifiable Control Variables (CLIST EXECs)

Control variables provide information about MVS, TSO, and the current
session, such as levels of software available, the time of day, and the date.
Your CLIST EXECs can use the control variables to obtain such current
information.

You do not have to define control variables. Control variables to which you
can assign values are called modifiable control variables. The descriptions for this

section are from the IBM publication, TSO/E: CLISTS, Chapter 5.

The variables in this list are supplied by TSO and are available to all different
CLIST EXEC types. You can modify the variable values.

Table 4-2 TSO Modifiable Control Variables for REXX EXECs

Variable
Name Description

RC The return code from any executed host command.
If IMFEXEC detects an error, it sets the REXX TRACE Negative condition to TRUE. As a
result, the incorrect IMFEXEC statement is traced. After echoing the incorrect IMFEXEC
statement to the BBI-SS PAS Journal, REXX issues its own trace message, which is
prefixed by +++.

RESULT The value of an expression returned by the RETURN command.

SIGL The line number of the statement currently executing when the last transfer of control to a
label took place.

Table 4-3 TSO Modifiable Control Variables for CLIST EXECs (Part 1 of 2)

Variable Description

&LASTCC Contains the most recent return code from the execution of the last TSO command or
command procedure statement and indicates whether the command was successfully
processed. Use &IMFRC to check the return code of the TSO command.
Note: To check the return code from the most recently executed IMFEXEC statement,
use &IMFCC.

&MAXCC Contains the highest return code from any TSO command or command procedure
executed so far.

&SYSASIS ON specifies CONTROL SYSASIS.
OFF specifies CONTROL NOSYSASIS.

&SYSCONLIST ON specifies CONTROL CONLIST.
OFF specifies CONTROL NOCONLIST.

&SYSDVAL The information entered from the terminal after a TERMIN or READ statement.

&SYSFLUSH ON specifies CONTROL FLUSH.
OFF specifies CONTROL NOFLUSH.
BMC Software, Inc., Confidential and Proprietary Information

4-14 MAINVIEW AutoOPERATOR Advanced Automation Guide

Using a TSO Variable Pool
TSO Non-Modifiable Control Variables (REXX EXECs)

The TSO/E REXX language itself does not provide the non-modifiable
variables that the CLIST language does. Instead, built-in and external
functions are used to obtain the values and assign them to variables. Refer to
the section describing “Using TSO/E Functions for REXX EXECs” on
page 2-6 and “Using TSO/E REXX Commands in REXX EXECs” on
page 2-7 in this manual.

&SYSLIST ON specifies CONTROL SYSLIST.
OFF specifies CONTROL NOSYSLIST.

&SYSMSG ON specifies CONTROL MSG.
OFF specifies CONTROL NOMSG.

&SYSOUTLINE Contains the number of lines of command output that were produced by a TSO command
and points to the CLIST variables containing the output.

&SYSOUTTRAP Contains the maximum number of lines of TSO command output to be saved.

&SYSPROMPT ON specifies CONTROL PROMPT.
OFF specifies CONTROL NOPROMPT.

&SYSSCAN Contains the maximum number of times a that CLIST can rescue a line to evaluate
variables. The default is 16 times.
The maximum value is +2,147,483,647. The minimum value is 0.

&SYSSYMLIST ON specifies CONTROL SYMLIST.
OFF specifies CONTROL NOSYMLIST.

Table 4-3 TSO Modifiable Control Variables for CLIST EXECs (Part 2 of 2)

Variable Description
BMC Software, Inc., Confidential and Proprietary Information

Chapter 4 Using Variables in REXX EXECs 4-15

Using a TSO Variable Pool
TSO Non-Modifiable Control Variables (CLIST EXECs)

The variables in this list are supplied by TSO and are available to all different
EXEC types; you cannot modify their values.1

1 The descriptions for this section are from the IBM publication, TSO/E: CLISTS, Chapter 5, “Using Control
Variables”.

Table 4-4 TSO Non-Modifiable Control Variables (CLIST EXECs

Variable Description

&SYSCPU Contains the number of seconds of CPU time used during the session in the form
seconds.hundredths-of-seconds.

&SYSDATE Contains the current date in the form month/day/year.

&SYSDLM Contains the character string the user entered to return control to the CLIST after a
TERMIN statement.

&SYSENV Indicates whether the CLIST is executing in the foreground or background environment.

&SYSHSM Indicates the level of Hierarchical Storage Manager (HSM) available to the CLIST.

&SYSICMD The name by which the user implicitly invoked the command procedure.

&SYSISPF Indicates whether ISPF dialog management services are available to the CLIST.

&SYSJDATE Contains the Julian date in the form year.days.

&SYSLTERM Contains the number of lines available on the screen.

&SYSLRACF Indicates the level of the Resource Access Control Facility (RACF) available to the
CLIST; see &SYSRACF below.

&SYSNEST Indicates whether or not the current command procedure was invoked by another
command procedure (nested).

&SYSPCMD The name of the most recently executed TSO command invoked by the command
procedure.

&SYSPROC The procedure name specified when the user logged on to TSO.

&SYSRACF Indicates whether the Resource Access Control Facility (RACF) is installed and available
to the CLIST.

&SYSSCMD The name of the most recently executed TSO subcommand invoked by the command
procedure.

&SYSSDATE Contains the date in the form year/month/day.

&SYSSRV Contains the number of system resource manager (SRM) service units used during the
session.

&SYSTIME The current time of day expressed as hh:mm:ss.

&SYSSTIME The current time of day expressed as hours:minutes.

&SYSTSOE Indicates level of TSO/E installed in the form version release modification number.

&SYSWTERM Contains the width of the screen.
BMC Software, Inc., Confidential and Proprietary Information

4-16 MAINVIEW AutoOPERATOR Advanced Automation Guide

Using LOCAL Variables and Pools
Using LOCAL Variables and Pools

This pool is created when an EXEC is assigned to a thread and is deleted
when the thread terminates. Variables in this pool are created by:

• Using the IMFEXEC command VPUT to move TSO variables into the
LOCAL pool

• Using IMFEXEC CMD with the RESPONSE capability to issue MVS
commands (refer to “CMD (Issue MVS Commands)” on page 12-90) and
by invoking SYSPROG services using the IMFEXEC RES command

The LOCAL pool is useful for passing variables between EXECs executing
within the same thread (for example, EXEC-initiated EXECs where
WAIT(YES) is coded). For example, the calling EXEC includes an
IMFEXEC VPUT statement to put variables from the TSO pool into the
LOCAL pool. Then, the called EXEC can operate on those variables by using
IMFEXEC VGET to get those variables from the LOCAL pool into the TSO
pool; REXX EXEC example:

REXX EXEC example:

N=1 /* creates a TSO variable in TSO pool*/
"IMFEXEC VPUT N LOCAL" /* IMFEXEC VPUT cmd places variable in LOCAL
pool*/

CLIST EXEC example:

SET &N=1 /* SET command creates a TSO variable in TSO pool*/
IMFEXEC VPUT N LOCAL /* IMFEXEC VPUT cmd places variable in LOCAL pool*/

These examples store variables from the TSO pool to the LOCAL pool.

Local variables are not available to EXECs invoked by the REXX CALL
function.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 4 Using Variables in REXX EXECs 4-17

Using SHARED Variables and Pools
Using SHARED Variables and Pools

SHARED variables are a pool of GLOBAL variables maintained in CSA.
Variables in this pool are:

• Created by a user who uses the IMFEXEC VPUT statement in an EXEC

REXX EXEC example:

N=1 /* creates a TSO variable in TSO pool*/
"IMFEXEC VPUT N SHARED" /* IMFEXEC VPUT cmd places variable in SHARED
 pool*/

CLIST EXEC example:

SET &N=1 /* SET command creates a TSO variable in TSO pool*/
IMFEXEC VPUT N SHARED/* IMFEXEC VPUT cmd places variable in SHARED pool*/

These examples store variables from the TSO pool to the SHARED pool.

• supplied by AutoOPERATOR

AutoOPERATOR supplies a set of read-only SHARED variables that
begin with the prefix Q.

If you create your own new variables, do not use a prefix of Q.

If a BBI-SS PAS warm start is performed:

The SHARED variable pool is kept, and all variables have the same values as
before the warm start.

If a BBI-SS PAS cold start is performed:

The SHARED pool will be reset only if you specify the RESET parameter in
your BBI-SS PAS JCL. The default is NORESET. Refer to “Cold Start of a
BBI-SS PAS” in the MAINVIEW Administration Guide for more information
on resetting the variable pool at BBI-SS PAS cold start.
BMC Software, Inc., Confidential and Proprietary Information

4-18 MAINVIEW AutoOPERATOR Advanced Automation Guide

Using SHARED Variables and Pools
You can also reset the pool by issuing the following statement in an EXEC:

REXX EXEC example:

"IMFEXEC VDEL ALL SHARED"

CLIST EXEC example:

IMFEXEC VDEL ALL SHARED

This statement deletes all of the variables from the SHARED pool except the
variables supplied by AutoOPERATOR.

To display the contents of the variable pool, use the BBI control command
DISPLAY VPOOL (parameters). Refer to the MAINVIEW Administration
Guide for more information about the BBI control commands.

Serializing Variables

During the time between the VGET and the use of the variable, the value in
the SHARED pool may have been modified by another EXEC. EXEC
authors are responsible for ensuring variable integrity through the consistent
use of ENQ and DEQ facilities throughout the automation procedures.

Refer to “Sharing Variables while Multi-Threading EXECs” on page 4-27
for more information.

The following lists AutoOPERATOR-supplied SHARED variables that can
be used with the IMFEXEC VGET command in an EXEC but cannot be used
with IMFEXEC VPUT.

AutoOPERATOR-Supplied SHARED Variables

Variable Description

QAOREL Contains a 5-character string indicating the release of AutoOPERATOR
The string takes the format v.r.m where:

v Is the version level

r Is the release level

m Is the modification level

QIMFID The BBI subsystem ID of this BBI-SS PAS.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 4 Using Variables in REXX EXECs 4-19

Using SHARED Variables and Pools
MAINVIEW AutoOPERATOR PATROL Enterprise Manager Integration Shared Variables

The following are REXX shared variables that are used when performing a
GME connection:

QIMGSTA (IMS & DB2 Performance Products only)
The status of BBI-SS PAS Image logging as ACTIVE or INACTIVE.

QIMGSUF (IMS & DB2 Performance Products Only)
The suffix of the current or last active BBI-SS PAS Image data set. If logging has
never been initialized, the value is null.

QIMSID The IMSID of the IMS/VS being monitored. This IMSID is available only when
IMS/VS is active. This IMSID is the same as the IMS/VS identified by QIMSNAME.

QIMSNAME The jobname of the IMS/VS being monitored by this BBI-SS PAS.

QIMSREL Contains the IMS release number.

QIMSSTA The status of IMS/VS (ERE, WARM, COLD, or INACT).

QJNLSTA The status of BBI-SS PAS Journal logging as ACTIVE or INACTIVE.

QJNLSUF The suffix of the current or last active BBI-SS PAS Journal data set. If logging has
never been initialized, the value is null.

QSMFID The SMF system ID of the system where the EXEC is running.

QSSNAME Contains the jobname of the SS address space.

Variable Description

QGMADDR.GMEID IP address of GMEID (GME node).

QGMTGTHB.GMEID Target heartbeat interval in minutes that AutoOPERATOR waits before sending
another heartbeat to target “gmeid”.

QGMLCLHB.GMEID Local heartbeat interval in minutes between AutoOPERATOR’s receiving of
heartbeats from target “gmeid”.

QGMLPORT.GMEID Listener port for the web server. Zero means no listener port is specified.

QGMMSGL.GMEID Maximum length of a message accepted from the GME node.

QGMNAME.GMEID Host name of the local GME node.

QGMRTC.GMEID Maximum connection retry count for the GME node.

QGMRTI.GMEID Connection retry interval for the GME node in minutes.

QGMSTAT.GMEID Status of GMEID (ACT, INACT, or DISCO).

QGMTRAPP.GMEID Minimum level of Application trace records to be sent by GMEID.

QGMTRGME.GMEID Minimum level of GME trace records to be sent by GMEID.

QGMTRSEC.GMEID Minimum level of Security trace records to be sent by GMEID.

QGMWND.GMEID Maximum number of messages that require acknowledgements sent to GMEID
without waiting for previous messages to be acknowledged. Zero indicates no
maximum.

Variable Description
BMC Software, Inc., Confidential and Proprietary Information

4-20 MAINVIEW AutoOPERATOR Advanced Automation Guide

Using the PROFILE Pool
Using the PROFILE Pool

The PROFILE pool is a pool of GLOBAL variables maintained in the
extended private area of the BBI-SS PAS and in a checkpoint data set named
BBIVARS referred to by the DD statement in the BBI-SS PAS JCL.

Variables in this pool are created by:

• A user who uses the IMFEXEC VPUT statement in an EXEC

REXX EXEC example:

N=1 /* Creates a TSO variable in TSO pool*/
"IMFEXEC VPUT N PROFILE" /* IMFEXEC VPUT cmd places variable in
 PROFILE pool*/

CLIST EXEC example:

SET &N=1 /* SET command creates a TSO variable in TSO pool*/
IMFEXEC VPUT N PROFILE /* IMFEXEC VPUT cmd places variable in
 PROFILE pool*/

This example stores variables from the TSO pool to the PROFILE pool.

The variables are written to the BBIVARS data set every time the IMFEXEC
VCKP command is issued or when an EXEC that updated any PROFILE
variable is terminated.

This variable pool is reconstructed from the BBIVARS data set whenever the
BBI-SS PAS is restarted. Each variable then contains the value last VPUT
into it prior to the BBI-SS PAS termination. Variable integrity is maintained
across IPLs and even if the BBI-SS PAS abends, except where:

• The BBI-SS PAS abends after a variable is VPUT to the PROFILE pool
but before the EXEC ends

• Before an IMFEXEC VCKP command is issued for the variable

Under these circumstances, the variable in the PROFILE data set or disk
would be that of the last completed update.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 4 Using Variables in REXX EXECs 4-21

Using the PROFILE Pool
Serializing Variables

During the time between the VGET and the use of the variable, the value in
the PROFILE pool may have been modified by another EXEC. EXEC
authors are responsible for ensuring variable integrity through the consistent
use of ENQ and DEQ facilities throughout the automation procedures.

Refer to “Sharing Variables while Multi-Threading EXECs” on page 4-27
for more information.
BMC Software, Inc., Confidential and Proprietary Information

4-22 MAINVIEW AutoOPERATOR Advanced Automation Guide

Saving Data in a Variable Pool
Saving Data in a Variable Pool

Complex EXECs may use many input sources, such as performance monitors
and subsystem messages, to create automation procedures. These procedures
can depend on several factors that vary over time. An example of these
factors might be the name of the current shift operator or the name of the on-
call IMS support person.

Variable pools provide a useful means of saving this type of information for
use by several automation procedures.

Potential Use

It is useful to localize site-dependent automation information (such as names
and phone numbers of key personnel) in variables for all automation
procedures to use. A simple EXEC can be written to set these variables
whenever the variable pool is reset.

Describing the Example

This example shows an EXEC that is used to set site-dependent automation
information in the PROFILE variable pool.

Information about key personnel is hardcoded in the EXEC (for example:
name, user ID, and telephone numbers). The EXEC creates LOCAL variables
for this information with the variables:

• NAME
• USERID
• WORKPHON
• HOMEPHON
• PAGER

The EXEC then places the variables into the PROFILE pool under one
variable name, IMSPROG.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 4 Using Variables in REXX EXECs 4-23

Saving Data in a Variable Pool
Example

Figure 4-1 Saving Variables in a Variable Pool

REXX EXEC example:

/* REXX */
/**/
/* DOC GROUP(MVS) CODE(J2) */
/* DOC DISP(YES) AUTHOR(B&B) */
/* DOC DESC(SAVING VARIABLES TO PROFILE POOL) */
/**/

NAME = ’JOHN_SMITH’
USERID = ’JJH1’
WORKPHON = ’800/323-2375’
HOMEPHON = ’312/666-1234’
PAGER = ’312/999-9999’
"IMFEXEC VDCL IMSPROG LIST(NAME USERID WORKPHON HOMEPHON PAGER)"
"IMFEXEC VPUT IMSPROG PROFILE"
ENDEXIT: END

CLIST EXEC example:

PROC 2 EXECNAME TITLE
/***/
/* DOC GROUP(MVS) CODE(J2) */
/* DOC DISP(YES) AUTHOR(B&B) */
/* DOC DESC(SAVING VARIABLES TO PROFILE POOL) */
/***/
SET NAME = &STR(JOHN_SMITH)
SET USERID = &STR(JJH1)
SET WORKPHON = &STR(800/323-2375)
SET HOMEPHON = &STR(312/666-1234)
SET PAGER = &STR(312/999-9999)
IMFEXEC VDCL IMSPROG LIST(NAME USERID WORKPHON HOMEPHON PAGER)
IMFEXEC VPUT IMSPROG PROFILE
BMC Software, Inc., Confidential and Proprietary Information

4-24 MAINVIEW AutoOPERATOR Advanced Automation Guide

Retrieving Data from a Variable Pool
Retrieving Data from a Variable Pool

This section describes how and why you can retrieve information from a
variable pool with EXECs.

Potential Use

There are many instances when you might want to create EXECs to notify
individuals or groups of individuals about serious operations situations. It is
advantageous to create these notifications in a general way so that they refer
to a title or a group name, but you can also write an EXEC that notifies
specific individuals by name when a situation occurs.

Variable pools provide this capability by allowing you to store variable data
such as names and phone numbers and retrieve them later.

Describing the Example

This EXEC retrieves the name, user ID, and telephone numbers of the IMS
systems programmer from the PROFILE pool where it was saved is the
“Example” on page 4-24.

The VGET statement retrieves the variable IMSPROG from the PROFILE
pool. Because it was saved and retrieved as a list variable, the data is mapped
in the variables NAME, USERID, and so on.

The data retrieved from IMSPROG is used to fill in the variable fields needed
in the ALERT command. Finally, a return code is set to zero and the EXEC
exits.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 4 Using Variables in REXX EXECs 4-25

Retrieving Data from a Variable Pool
Example

Figure 4-2 Retrieving Variables in a Variable Pool Example

REXX EXEC example:

/* REXX EXEC */
/**/
/* DOC GROUP(MVS) CODE(J2) */
/* DOC DISP(YES) AUTHOR(B&B) */
/* DOC DESC(RETRIEVING VARIABLES) */
/**/

"IMFEXEC VDCL IMSPROG LIST(NAME USERID WORKPHON HOMEPHON PAGER)"
"IMFEXEC VGET IMSPROG INTO(IMSPROG) PROFILE"
"IMFEXEC ALERT IMSPROG"TIME()"",
 "’IMSPROG IS NEEDED. CALL "NAME" AT /N "WORKPHON" OR",
 ""HOMEPHON"’" "FUNCTION(ADD) PRI(MAJOR) QUEUE(IMSPROG)"
"IMFEXEC EXIT CODE(0)"
EXIT

CLIST EXEC example:

PROC 0
/***/
/* DOC GROUP(MVS) CODE(J2) */
/* DOC DISP(YES) AUTHOR(B&B) */
/* DOC DESC(RETRIEVING VARIABLES) */
/***/
IMFEXEC VDCL IMSPROG LIST(NAME USERID WORKPHON HOMEPHON PAGER)
IMFEXEC VGET IMSPROG INTO(IMSPROG) PROFILE
IMFEXEC ALERT IMSPROG||&SYSTIME +
 ’IMSPROG IS NEEDED. CALL &NAME AT /N &WORKPHON OR +
 &HOMEPHON’ FUNCTION(ADD) PRI(MAJOR) QUEUE(IMSPROG)
IMFEXEC EXIT CODE(0)
EXIT
BMC Software, Inc., Confidential and Proprietary Information

4-26 MAINVIEW AutoOPERATOR Advanced Automation Guide

Sharing Variables while Multi-Threading EXECs
Sharing Variables while Multi-Threading EXECs

If you are allowing concurrent execution of multiple EXECs (see “Multi-
Threading EXECs to the Normal or Priority Queue” on page 5-4), then
GLOBAL variables might be accessed and modified by several EXECs
concurrently. AutoOPERATOR does not serialize variable usage between
IMFEXEC VGET and VPUT commands. You are responsible for the
contents of your SHARED or PROFILE pool. The IMFEXEC VENQ and
VDEQ statements are provided to serialize any resource. They are especially
useful for serializing the use of variables.

Potential Use

You must take special care if a GLOBAL variable can be updated by different
EXECs concurrently or if an EXEC that updates a GLOBAL variable
executes multiple times concurrently due to the use of multi-threading. This
could eventually lead to disastrous results.

This example EXEC updates GLOBAL variables; it uses a locking
mechanism provided by the IMFEXEC VENQ command to avoid variable
corruption.

Describing the Example

This EXEC serializes a resource named ABENDCNT. The site that uses this
EXEC has set a standard saying that GLOBAL variables are serialized using
a resource name that is identical to the variable name. All EXECs within the
site must conform to the standard or variable integrity might not be
maintained.

The EXEC obtains an exclusive ENQ on the resource, reads the variable from
the SHARED pool, performs some operations on the variable, saves the
variable back in the SHARED pool, releases the resource, and exits.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 4 Using Variables in REXX EXECs 4-27

Sharing Variables while Multi-Threading EXECs
Example

Figure 4-3 Using VENQ and VDEQ to Serialize Variables

REXX EXEC example:

/* REXX EXEC */
/*--*/
/* DOC GROUP(AOS) FUNC(AOSAMP) DESC(USING VENQ AND VDEQ) */
/* DOC DISP(YES) AUTHOR(JAC) */
/*--*/
"IMFEXEC VENQ ’ABENDCNT’ EXC"
IF IMFCC NE 0 THEN EXIT(16)
"IMFEXEC VGET ABENDCNT"
.
.
.
ABENDCNT=ABENDCNT+1
"IMFEXEC VPUT ABENDCNT"
"IMFEXEC VDEQ ’ABENDCNT’"
IF IMFCC NE 0 THEN EXIT(16)
"IMFEXEC EXIT CODE(0)"

CLIST EXEC example:

PROC 0
/***/
/* DOC GROUP(AOS) FUNC(AOSAMP) DESC(USING VENQ AND VDEQ) */
/* DOC DISP(YES) AUTHOR(JAC) */
/***/
IMFEXEC VENQ ’ABENDCNT’ EXC
IF &IMFCC NE 0 THEN EXIT(16)
IMFEXEC VGET ABENDCNT
.
.
.
SET ABENDCNT=&ABENDCNT+1
IMFEXEC VPUT ABENDCNT
IMFEXEC VDEQ ’ABENDCNT’
IF &IMFCC NE 0 THEN EXIT(16)
IMFEXEC EXIT CODE(0)
BMC Software, Inc., Confidential and Proprietary Information

4-28 MAINVIEW AutoOPERATOR Advanced Automation Guide

Rule-Initiated EXECs Initiated by MVS Multi-Line or Multi-Segment Messages
Rule-Initiated EXECs Initiated by MVS Multi-Line or
Multi-Segment Messages

Rule-initiated EXECs fired by multi-line WTOs or multi-segment message
can access only the first line or segment of the MVS or IMS message with
symbolic parameters on the PROC statement. For more information about
Rule-initiated EXECs, refer to “Rule-Initiated REXX EXECs” on page 3-7.

To access the additional lines and segments in the MVS or IMS message, the
EXEC must use the IMFEXEC VGET statement to create LOCAL variables
for LINE1 through LINExxxx (depending on the number of lines of the
WTO).

The actual number of lines or segments in the MVS or IMS message is stored
in the TSO variable IMFNOL. If you have five lines, then IMFNOL=5.

Potential Use

This section describes how to handle accessing the additional lines of
information from multi-line WTOs or multi-segment messages.

This example shows an MVS multi-line WTO that fired a Rule-initiated
EXEC:

JOB01766 IEF450I JDB1ABND - ABEND=S0C1 U0000 REASON=00000001 984
 984 TIME=10.51.34

Describing the Example

In this example, the ARG statement does not contain any symbolic
parameters because the first line of the message is retrieved from the LINE01
variable.

However, in general, the first line could also be retrieved using symbolic
parameters (such as in Rule-initiated EXECs). The example in this section
demonstrates this process. The EXEC simply retrieves all lines of IEF450I
and writes the output of this message to the BBI-SS PAS Journal.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 4 Using Variables in REXX EXECs 4-29

Rule-Initiated EXECs Initiated by MVS Multi-Line or Multi-Segment Messages
Example

Figure 4-4 Multi-Line WTO EXEC Example

REXX EXEC example:

/* REXX EXEC */
/**/
/* DOC GROUP(AOS) FUNC(AOSAMP) DESC(RETRIEVING MULTILINE WTO) */
/* DOC DISP(YES) AUTHOR(JAC) */
/**/

 DO I = 1 to IMFNOL
 "IMFEXEC VGET LINE"I" LOCAL"
 "IMFEXEC MSG ’"VALUE(’LINE’I)"’"
 END

CLIST EXEC example:

/***/
/* DOC GROUP(AOS) FUNC(AOSAMP) DESC(RETRIEVING MULTILINE WTO) */
/* DOC DISP(YES) AUTHOR(JAC) */
/***/
 IMFEXEC MSG ’**’
 SET I=1
 SET &SYSSCAN=0
 SET AMPER=&
 SET &SYSSCAN=16
 DO WHILE &I LE &IMFNOL
 IMFEXEC VGET LINE&I LOCAL
 IMFEXEC MSG &ER.LINE&I
 SET I=&I + 1
 END
 IMFEXEC MSG ’**’
BMC Software, Inc., Confidential and Proprietary Information

4-30 MAINVIEW AutoOPERATOR Advanced Automation Guide

16
Chapter 5 Controlling EXEC
Execution

This chapter discusses how to:

• Schedule EXECs to be run

• Schedule an EXEC that waits for another EXEC to complete
(synchronous execution)

• Invoke an EXEC

• Monitor and control EXEC execution using BBI control commands

• Code an EXEC to display CPU consumption

Scheduling EXECs

Each EXEC represents a unit of work that needs to be completed. Just as any
system that handles requests to complete work, AutoOPERATOR provides
scheduling facilities for EXECs. EXECS are queued for execution to either:

• The Normal queue

• The Priority queue
BMC Software, Inc., Confidential and Proprietary Information

Chapter 5 Controlling EXEC Execution 5-1

Scheduling EXECs
Defining Threads

When an EXEC is scheduled to either the Normal or Priority queue, it waits
for a server, called a thread, to become available. The number of threads
available to the Normal and Priority queues are defined by the installation
(see “Multi-Threading EXECs to the Normal or Priority Queue” on page 5-
4).

An EXEC remains assigned to a single thread until the EXEC terminates. In
a single thread, only one EXEC can be actively running at any one time.
Multiple EXECs can execute under the same thread: this is called
synchronous execution. Refer to “Invoking EXECs Synchronously with
IMFEXEC SELECT(EXEC) WAIT(YES)” on page 5-8 for more
information.

Scheduling EXECs to the Normal Queue

By default, all EXECs (ALERT-initiated, Time-initiated, and so on) are
scheduled through the Normal queue regardless of how they are invoked. The
EXEC executes immediately if there is a thread available, otherwise it waits
until one becomes available. The default setting is one thread for the Normal
queue.

Scheduling EXECs to the Priority Queue

The Priority queue is for EXECs that must not wait for a long backlog of
processing. To send an EXEC to the Priority queue, you must identify the
EXEC in either of two ways:

• Specify the name of the EXEC in BBPARM member AAOEXP00

• Use the PRI(HI) parameter of the IMFEXEC SELECT command

Refer to “SELECT” on page 12-140 for more information about how to
code the IMFEXEC SELECT command.

Both these methods are described in this chapter.
BMC Software, Inc., Confidential and Proprietary Information

5-2 MAINVIEW AutoOPERATOR Advanced Automation Guide

Scheduling EXECs
Naming the EXEC in BBPARM member AAOEXP00:

In BBPARM member AAOEXP00, the EXEC= parameter allows you to
specify the names of EXECs that will automatically receive high priority
status. The MAINVIEW AutoOPERATOR Customization Guide contains
information for BBPARM member AAOEXP00.

Example 1:

BBPARM member AAOEXP00 contains the statement

EXEC=THREE

This parameter specifies that an EXEC named THREE is queued to the
Priority queue whenever it is invoked and regardless of how it is invoked (for
example, Rule-initiated, ALERT-initiated, and so on).

The exception to this situation is for EXEC-initiated EXECs where an EXEC
is invoked with the IMFEXEC SELECT statement. See Example 2 on this
page for clarification.

Example 2:

If you use the IMFEXEC SELECT statement to schedule an EXEC that is
named in BBPARM MEMBER AAOEXP00, you must still code the
parameter PRI(HI) to have the EXEC scheduled to the Priority queue.

To schedule an EXEC named in BBPARM member AAOEXP00 with
IMFEXEC SELECT, code:

IMFEXEC SELECT EXEC(THREE XYZ1 XYZ2) PRI(HI)

EXEC THREE executes immediately on the Priority queue if there is at least
one thread available. If there is no Priority thread available, then the EXEC
waits until a Priority thread is available.

You must restart the BBI-SS PAS to pick up new EXEC names added to
AAOEXP00.

Using the IMFEXEC SELECT Statement and the PRI(HI) Parameter:

You can use the PRI(HI) parameter with the IMFEXEC statement to schedule
an EXEC to the Priority Queue. To do this, code the PRI(HI) operand on the
IMFEXEC SELECT command that calls the EXEC.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 5 Controlling EXEC Execution 5-3

Scheduling EXECs
For example; the following statement

IMFEXEC SELECT EXEC(FOUR XYZ1 XYZ2) PRI(HI)

schedules EXEC FOUR for execution on the Priority queue.

EXEC FOUR executes immediately if there is at least one Priority thread
available. If no Priority thread is available, then the EXEC waits until a
Priority thread is available.

EXECs can be added dynamically to libraries in the SYSPROC
concatenation. You do not have to restart the BBI-SS PAS if you use this
method to schedule priority EXECs but you must issue the .RESET BLDL
SYSPROC command.

Multi-Threading EXECs to the Normal or Priority Queue

Define multiple threads for the Normal queue and the Priority queues in the
BBPARM member AAOEXP00. This allows concurrent execution of
multiple EXECs. The following table shows how to do this.

If you are operating with MAXNORM or MAXHIGH set to greater than one
and then want to reset MAXNORM=1, you must ensure that no automation
procedures are dependent on the concurrent execution of several EXECs.

CAUTION:
Multi-threading EXECs requires additional virtual storage in the BBI-SS
PAS address space. If virtual storage is insufficient, the subsystem will fail
with an x78 abend.

Multi-threading EXECs may also require variable serialization using
ENQ/DEQ logic. Refer to “Sharing Variables while Multi-Threading
EXECs” on page 4-27 for more information.

Queue Name Parameter Name Example

Normal queue MAXNORM=
Specify the number of threads on
the MAXNORM= statement in
BBPARM member AAOEXP00

For example, the parameter statement
MAXNORM=10
defines 10 threads for the Normal queue and 10
EXECs can run concurrently in the Normal queue.

Priority queue MAXHIGH=
Specify the number of threads on
the MAXHIGH= statement in
BBPARM member AAOEXP00

For example, the parameter statement
MAXHIGH=5
defines five threads for the Priority queue and five
EXECs can run concurrently in the Priority queue.
BMC Software, Inc., Confidential and Proprietary Information

5-4 MAINVIEW AutoOPERATOR Advanced Automation Guide

Scheduling EXECs
Using EXEC Threads and Their Effect on Performance

BMC Software recommends that all automation be done within a Rule (or set
of Rules) whenever possible. This is both for performance and storage
considerations. Rules are faster and use less resources. However, not all
automation can be done within Rules. The following information and/or
recommendations offers assistance in tuning your automation for use with
EXECs.

AutoOPERATOR is shipped with the following default values for
MAXHIGH and MAXNORM EXEC threads. When installed with
AutoCustomization:

— MAXNORM=5
— MAXHIGH=5

When using BBPARM member AAOEXP00 as it is shipped with
AutoOPERATOR, the settings are:

— MAXNORM=1
— MAXHIGH=5

It is necessary to understand of the two types of EXEC threads, MAXNORM
and MAXHIGH. EXECs are normally considered batch work. This batch
work may occasionally get backed up. You can control the maximum
number of queued EXECs with the MAXNORMQ and MAXHIGHQ fields
in BBPARM member AAOEXP00.

Because not all automation can be done with Rules, AutoOPERATOR
provides a way of scheduling higher priority automation within an EXEC.
This is where the Priority EXEC thread comes into use. AutoOPERATOR
intends that the Priority queue does not get backed up (or it should back up
much less). Therefore, the default MAXHIGH value shipped in the sample
BBPARM member AAOEXP00 is much higher than the value for Normal
EXECs (MAXNORM).

Note: When tuning automation through EXECs, you should note that the
actual dispatching priority of Priority EXECs is the same as a
Normal EXEC.

These Priority EXECs compete for CPU on the same dispatching priority as
NORM EXECs. The concept of a Normal and Priority EXEC queue is
designed as a method to have 2 queues, where one is used less and therefore,
scheduled faster.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 5 Controlling EXEC Execution 5-5

Scheduling EXECs
For example, if you have MAXNORM=5 and MAXHIGH=5 and currently
have 10 Normal EXECs scheduled, you would have 5 currently running and
5 queued up to run. If you then want to schedule a new EXEC, if it was
Normal it would be queued up behind the other 5, but if it was Priority, it
runs immediately.

It is also important to know that “more is not faster”. Using more EXEC
threads means more tasks for MVS to manage. The CPU overhead goes up
because there are more EXEC threads. Each system is different and no
specific value for CPU consumption (or optimum number of EXEC threads)
can be provided. For most sites the default value of MAXNORM=5 and
MAXHIGH=5 is sufficient. However, the optimum value for an individual
system may be lower or higher.

Additional Recommendations

You should take into consider the following when tuning AutoOPERATOR
for the optimum value of MAXNORM and MAXHIGH:

Step 1 Start with the least number of EXEC threads needed to get the desired
throughput.

Step 2 Use MAXNORMQ and MAXHIGHQ along with the warning settings in
BBPARM member AAOEXP00 so you can be advised when the EXEC
threads queue up. Adjust the MAXNORM and MAXHIGH values as
needed.

Step 3 All EXEC threads, whether CLIST or REXX EXECs, use a large amount of
private storage below the line. Use of an excessive amount of EXEC threads
will cause LSQA to limit the amount of low private available to the system.

Step 4 Carefully consider the actions within the EXECs before changing
MAXNORM and/or MAXHIGH settings. Move automation out of EXECs
to Rules whenever possible. Rules are always faster and always use less
system resources.

Step 5 Consider breaking EXECs that wait for an excessive amount of time into
multiple parts. A combination of Rules and EXECs may be used to replace
one long running EXECs.

Each system and automation strategy is different and tuning should be done
on each system. However, where you need some recommendations to start
with, you can also take the following actions:
BMC Software, Inc., Confidential and Proprietary Information

5-6 MAINVIEW AutoOPERATOR Advanced Automation Guide

Scheduling EXECs
Step 1 Start with the default values supplied in AAOEXP00.

Step 2 Use the following threshold control fields in AAOEXP00 to determine when
you have a problem.

MAXNORMQ=0 (default of 0 means not in use)

MAXHIGHQ=0 (default of 0 means not in use)

WARNLVL1=60 (default of 60 but not valid until MAXNORM or
MAXHIGH used)

WARNLVL2=75 (default of 75 but not valid until MAXNORM or
MAXHIGH used)

Step 3 Only change automation strategy after careful analysis of what is causing the
queues to back up. Remember, more EXEC threads use more CPU and
therefore may increase the queue back log.

Step 4 Use the least number of EXEC threads needed to accomplish the required
throughput.

Step 5 MAXHIGH should be set equal or higher to MAXNORM.

Step 6 Lastly, more EXEC threads means higher use of LSQA, since each thread
needs a MVS TCB, etc. which all reside in LSQA. If you have been
experiencing a shortage of low private storage (for example, ABENDS s878-
10), check the values of MAXHIGH and MAXNORM.

Any value greater than the recommended value of 5 and 5 respectively should
be carefully considered as a possibility of contributing to a shortage of low
private storage.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 5 Controlling EXEC Execution 5-7

Invoking EXECs Synchronously with IMFEXEC SELECT(EXEC) WAIT(YES)
Invoking EXECs Synchronously with IMFEXEC
SELECT(EXEC) WAIT(YES)

Some automation procedures may need to include more than one EXEC to
run. Using the IMFEXEC SELECT statement in an EXEC allows one EXEC
to invoke another EXEC-initiated EXEC are usually subroutines or service
routines that carry out specialized tasks needed by several automation
procedures.

An EXEC can invoke another EXEC under the same thread (synchronously)
or under a new thread (asynchronously). IMFEXEC SELECT allows one
EXEC to invoke another. If IMFEXEC SELECT is coded with WAIT(YES),
the called EXEC is invoked to execute under the same thread. Otherwise, the
called EXEC executes as a separate task under a new thread.

The following table shows where you can find more information.

Passing Control of the EXEC

By specifying the WAIT(YES) parameter on an IMFEXEC SELECT
statement, an EXEC can schedule another EXEC, wait for its completion,
and then resume execution.

When an EXEC invokes another EXEC using the WAIT(YES) parameter,
control is passed immediately to the called EXEC. The called EXEC can use
the IMFEXEC statements VDCL, VGET, and VPUT to access all the
LOCAL, GLOBAL, and SHARED variables created by the first EXEC, but it
does not have access to any of the TSO variables created by the first EXEC.

The execution of the calling EXEC is suspended when the called EXEC is
being processed. When the called EXEC terminates, the first EXEC receives
control at the first statement immediately after the IMFEXEC SELECT
statement.

BBI variables IMFCC and IMFRC are used to report the success of the
scheduled WAIT(YES) EXEC. See “Understanding Completion Codes for
EXEC-Initiated EXECs with WAIT(YES) and User-Written Programs” on
page 12-143 for a complete discussion.

To read about See

EXEC-initiated EXECs “EXEC-Initiated REXX EXECs” on page 3-19

Using the IMFEXEC SELECT statement and its parameters “SELECT” on page 12-140

Using variables Chapter 4, “Using Variables in REXX EXECs”
BMC Software, Inc., Confidential and Proprietary Information

5-8 MAINVIEW AutoOPERATOR Advanced Automation Guide

Implementing an EXEC
For EXECs invoked with the IMFEXEC SELECT EXEC() WAIT(yes)
statement, the two ways to pass back results are using:

• IMFEXEC EXIT CODE(x)

• A local, shared, or profile variable

Using RETURN will give control back to the calling EXEC but the passed
back value (RESULT) is not supported.

Implementing an EXEC

Once an EXEC has been designed, coded, and tested, it can be implemented
in AutoOPERATOR using two steps:

• Move the EXEC to a data set in the SYSPROC or the SYSEXEC library
concatenation of your production BBI-SS PAS.

If you use both the SYSPROC and SYSEXEC members, the following
limitations apply:

— If you have an EXEC with the same name in both the SYSPROC and
SYSEXEC members, then the EXEC is SYSEXEC is executed.

— If you have an EXEC with the same name in both the SYSPROC and
SYSEXEC members, then disabling the EXEC in one member also
disables it in the other member.

In other words, the EXEC always has the same status, no matter
which member it is in.

— Both SYSPROC and SYSEXEC can be browsed from the EXEC
Management application.

— If you try to invoke an EXEC from the EXEC Management
application that is listed in SYSPROC and is also listed in SYSEXEC,
you will receive an error message.

• If the EXEC was moved to the BBPROC library concatenation (the
DDNAME is SYSPROC) after the BBI-SS PAS was recycled, issue the
command:

.RESET BLDL SYSPROC
BMC Software, Inc., Confidential and Proprietary Information

Chapter 5 Controlling EXEC Execution 5-9

Controlling EXEC Execution
and the EXEC will be available immediately. Changes to existing EXECs
take effect immediately without the .RESET command but new EXEC
names cannot be accessed until the .RESET command is issued or the SS
is started.

CAUTION:
If you try to access new EXEC names without a SS restart or resetting,
you will receive the following error message displayed in the upper
corner:

EXEC NOT FOUND

Controlling EXEC Execution

This section describes how you can control the execution of EXECs once
they are invoked by:

• Setting time and CPU limits for EXECs

• Displaying the status of an EXEC

• Stopping (disabling), starting (enabling), and canceling an EXEC

These functions are performed using the BBI control commands. Refer to
the MAINVIEW Administration Guide for more complete information
about the BBI control commands.

Setting Time and CPU Limits for EXECs

The following list describes how to set CPU and time limits for EXECs.

• Set the parameters in BBPARM member AAOEXP00:

— PEREXLIM

— TIMEXLIM

to control time and/or CPU limits for all EXECs.

• Use the IMFEXEC CNTL statement and its parameters in an EXEC:

— PERLIM(xx)

— TIMLIM(xx)
BMC Software, Inc., Confidential and Proprietary Information

5-10 MAINVIEW AutoOPERATOR Advanced Automation Guide

Controlling EXEC Execution
to control time and CPU limits for a specific EXEC.

If these parameters are specified in an EXEC, they override the
parameters set on PEREXLIM and TIMEXLIM in BBPARM member
AAOEXP00. Refer to “CNTL” on page 12-103 for a complete
description of IMFEXEC CNTL and its parameters.

PERLIM(xx)

For example, if you specify:

IMFEXEC CNTL PERLIM(15)

The EXEC runs until it exceeds 15% of the CPU during any 15 second
interval. If the EXEC exceeds 15%, it is automatically terminated.

TIMLIM(xx)

For example, if you specify:

IMFEXEC CNTL TIMLIM(10)

the EXEC runs until it exceeds 10 CPU seconds. If the EXEC exceeds 10
CPU seconds, it is automatically terminated and abend message U3001 is
issued.

When an EXEC exceeds the limits you set, check to see if it is executing
correctly or if it has gone into a loop. Use the EXEC Management
Application to determine if EXECs are running closely to the limits you
have set. BMC Software recommends that you set these parameters with
non-zero values because a value of zero allows unlimited CPU consumption
by an EXEC.

Displaying EXEC Execution Status

You can monitor and control the progress of an EXEC by using the BBI
control command DISPLAY EXEC in the BBI Log display. The format of
the command is:

.DISPLAY E|EXEC ALL|HIGH|NORMAL|STATS

This command shows the statistics for all running and queued EXECs. By
examining the progress of an EXEC, you can decide whether you need to
take actions such as terminating or disabling the EXEC.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 5 Controlling EXEC Execution 5-11

Controlling EXEC Execution
You also can use the EXPAND primary command on the EXEC Management
application to display currently active EXECs. For more information and an
example, refer to the chapter “Managing EXECs Using the EXEC
Management Application” in the MAINVIEW AutoOPERATOR Basic
Automation Guide.

Canceling, Stopping, and Starting EXEC Execution

You might decide to manually control the progress of an EXEC once it has
been invoked. By using the BBI control command .DISPLAY, you can see
the progress in the BBI Log display. If you decide to intervene in the EXEC,
you can use the following BBI control commands:

You can also control the execution of an EXEC with the EXEC Manager
application. Refer to the MAINVIEW AutoOPERATOR Basic Automation
Guide for more information.

BBI Control
Command Action taken

.CANCEL Terminates the execution of an EXEC while it is running or if it is waiting for a thread
to become available.
Warning! The CANCEL command causes an abnormal termination of the TSO/E
EXEC command and any other command or program currently running within the
EXEC. The abnormal termination might result in resources, such as storage, not
being cleaned up. Particularly, if the command or program does not explicitly
freemain subpool 0 storage and relies upon task termination to clean up this
storage, the storage will not be freemained and an eventual private storage problem
might be experienced, such as ABEND878 RC10.

.STOP Disables an EXEC that is running. This command prevents the EXEC from being
invoked again until it is either STARTed by the BBI START command or RESET by
the BBI RESET BLDL SYSPROC command. Does not cancel the current EXEC.

.START Enables an EXEC that has been STOPped and makes it available to be invoked.
This command does not invoke an EXEC.
BMC Software, Inc., Confidential and Proprietary Information

5-12 MAINVIEW AutoOPERATOR Advanced Automation Guide

Analyzing EXEC Performance with the EXEC Management Application
Analyzing EXEC Performance with the EXEC
Management Application

This section discusses how you can use the EXEC Management Application
to analyze how well EXECs are running on your system. For a more general
discussion about the AutoOPERATOR EXEC Management Application,
refer to the chapter “Using the EXEC Management Application” in the
MAINVIEW AutoOPERATOR Basic Automation Guide.

The EXEC Management Application has panel displays that show EXEC
usage statistics such as:

• The highest CPU total
• The average CPU percentage
• The number of times an EXEC as been executed since the last

AutoOPERATOR subsystem cold start

For performance analysis, the following data columns are of special interest:

Column Heading Description

SCHED Is the number of times the EXEC has been scheduled.

Each time an EXEC is scheduled from a Rule, ALERT-initiated EXEC,
external program, the TS command line, or another EXEC, the SCHED count
is incremented. A REXX program executed through a CALL statement is not
counted.

When EXECA calls EXECB (with an IMFEXEC SELECT statement where
WAIT(YES) is specified), both EXECA and EXECB are counted in the
SCHED count.

TOTCPU Is the sum of CPU time used for all scheduled executions of the EXEC since
the SS was started.

If the EXEC schedules another EXEC (with an IMFEXEC SELECT
statement where WAIT(YES) is specified), then CPU collection for the first
EXEC is suspended until the selected EXEC returns control. If a REXX
EXEC executes another REXX EXEC using the REXX CALL facility, the
CPU time is charged to the calling EXEC.

AVGCPU Is the value when the value in the TOT-CPU column is divided by the value
in the SCHED column.

MAXCPU Is the greatest amount of CPU time the EXEC used during any single
execution.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 5 Controlling EXEC Execution 5-13

Analyzing EXEC Performance with the EXEC Management Application
Using the SORT Command in the EXEC Management Application

The SORT command can be used to categorize EXECs by their performance.

To use this command, enter SORT on the command line of the EXEC
Management panel. For example:

SORT AVGCPU D

sorts the display where the EXECs with the highest average CPU
consumption are shown at the top.

By sorting the display, you can more easily see where the AVERAGE CPU
consumption of a specific EXEC is equal-to or less-than the limit set in the
TIMEXLIM parameter for the subsystem.

You should address the EXECs that are executing above this limit for tuning.

Key Performance Indicator Discrepancies:

Other discrepancies that can (and should) be analyzed are:

• When (for any EXEC) the MAXCPU is at least 25% greater than the
AVGCPU column

This indicates that an EXEC may be subject to spikes in CPU
consumption. This may be due to the volume of its input or other events
that drive the EXEC.

• When the SCHED value (the number of times scheduled) is incrementing
rapidly

This can indicate a scheduling loop or a flood of message events.

Note that in this event, the TOTCPU, AVGCPU, and MAXCPU numbers
may be low. Generally, EXECs that are being initiated excessively are
Rule-initiated EXECs that are scheduled by a flood of events.

Often, such problems are resolved by altering the design of the Rule-
initiated EXEC.
BMC Software, Inc., Confidential and Proprietary Information

5-14 MAINVIEW AutoOPERATOR Advanced Automation Guide

Writing EXECs that Display CPU Consumption
Writing EXECs that Display CPU Consumption

A common problem with EXEC performance is an EXEC exceeding the
CPU thresholds set for AutoOPERATOR. The resulting abend can be
bypassed by using IMFEXEC CNTL statement in the EXEC to reset the
limits. However, this can potentially expose your system to excessive CPU
consumption and/or program loops, and diagnosing a runaway situation such
as this is difficult.

One technique for diagnosing these problems involves writing some
additional code in the EXEC to monitor itself.

For example:

• When writing REXX EXECs, use the following statement:

TSO FUNCTION "SYSVAR(’SYSCPU’)"

The total amount of CPU seconds used to date for the TCB on which the
EXEC is running is returned.

• Use the &SYSCPU system variable when writing CLIST EXECs

The total amount of CPU seconds that has been used to date for the TCB
on which the EXEC is running is returned.

• Change the EXEC to set a control variable with the CPU value on entry.

The control variable can then be manipulated later as required.

For example:

/* REXX */
parse arg exec_name p1 .
do x = 1 to p1 by 1
 "VGET VARNAME"||x "SHARED"
 "MSG ’VARNAME"||x "=" value("VARNAME"||x)"’"

end x
"EXIT CODE(0)"
exit 0

This EXEC is a subroutine that displays an array of variables from the
SHARED variable pool on the sub-system journal. Occasionally, it may spike
in CPU consumption because the number of array items spikes. However,
this is not a situation that can be seen and analyzed from the EXEC
Management application.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 5 Controlling EXEC Execution 5-15

Writing EXECs that Display CPU Consumption
Therefore, you can modify the EXEC to identify the problem and display
diagnostic data using the SYSCPU function as shown:

/* REXX */
entry_cpu = trunc(SYSVAR(’SYSCPU’)) /* Get CPU Time on entry */
parse arg exec_name p1 .
do x = 1 to p1 by 1
 "VGET VARNAME"||x "SHARED"
 "MSG ’VARNAME"||x "=" value("VARNAME"||x)
 time_used = trunc(SYSVAR(’SYSCPU’)) - entry_cpu

 if time_used => "CPU LIMIT SET ON THE SYSTEM" then
 do
 "ALERT" exec_name"@CPU ’CPU TIME AT" x "ELEMENTS IS"
 time_used"’"
 entry_cpu = trunc(SYSVAR(’SYSCPU’))
 end

end x
"EXIT CODE(0)"
exit 0

In this example, the EXEC itself does some preliminary analysis for the
EXEC writer. More typically, this routine would be built into a common
function which can be called.

BBSAMP member AOXCPUFI contains an example of REXX internal
functions that you can easily incorporate into another EXEC to selectively
call for analysis.

BBSAMP member AOXCPUSI contains an example of a REXX EXEC that
uses AOXCPUFI (internally called by a REXX EXEC as CPU_FUNC) to
monitor CPU utilization. This example EXEC checks CPU consumption after
a defined numbers of operations in its calling routine to determine the
threshold number of events that equal a predefined amount of CPU seconds.

Note: BBSAMP member AOXCPUST contains the tokenized version of
AOXCPUSI. Refer to “REXX EXEC Considerations” on page 6-21
for more information about tokenized REXX EXECs.
BMC Software, Inc., Confidential and Proprietary Information

5-16 MAINVIEW AutoOPERATOR Advanced Automation Guide

26
Chapter 6 Using Advanced
Techniques with
AutoOPERATOR EXECs

This chapter describes some advanced functions of AutoOPERATOR EXECs
and describes how to handle EXECs across more than one BBI-SS PAS and
target. Topics include:

• Scheduling EXECs across BBI-SS PASs

• Determining the origin of an EXEC

• Using the program called IMFSUBEX to invoke EXECs from outside
AutoOPERATOR

• Testing EXECs

• Deleting, reading, and writing SHARED and PROFILE variables across
BBI-SS PASs

Overview

Any BBI-SS PAS address space can monitor other target systems. You can
also have multiple BBI-SS PAS address spaces communicating with one
another. A target can be:

• Any CICS, IMS, DB2, or MVS system

• Any MVS subsystem

Define these two types of targets as follows:
BMC Software, Inc., Confidential and Proprietary Information

Chapter 6 Using Advanced Techniques with AutoOPERATOR EXECs 6-1

Scheduling Messages and EXECs across BBI-SS PASs
Because EXECs can interact with any target you specify, careful managing of
your EXECs across more than one target or BBI-SS PAS becomes very
important. For more information about targets and BBI-SS PAS to BBI-SS
PAS communication, refer to the MAINVIEW Administration Guide.

Scheduling Messages and EXECs across BBI-SS
PASs

The following items can be sent from one BBI-SS PAS to any other BBI-SS
PAS or target, even in remote locations:

• Messages

• EXECs

• ALERTs

• IMF or MAINVIEW for DB2 service commands

This means a single BBI-SS PAS can monitor and control many systems as
long as the target systems have a BBI-SS PAS product installed. It is also
possible to detect and correct conditions that arise in one target system but
affect another target system. This is important because you want to be able to
manage and control all the activity between BBI-SS PASs and targets.

To accomplish these tasks, use the appropriate IMFEXEC statement and
specify the target with the TARGET keyword. The following table shows
what tasks you can accomplish and which IMFEXEC statements to use.

Target type BBPARM member Parameter name

MVS, CICS, IMS BBIJNT00 target=

MVS subsystem BBINOD00 subsys=
BMC Software, Inc., Confidential and Proprietary Information

6-2 MAINVIEW AutoOPERATOR Advanced Automation Guide

Scheduling Messages and EXECs across BBI-SS PASs
Refer to Chapter 12, “Using the IMFEXEC Statements” for the complete
description of these IMFEXEC statements.

The target that you specify on these commands must be defined in BBPARM
member BBIJNT00 on the local BBI-SS PAS. For information about how to
define targets to a BBI-SS PAS, refer to “Define BBI-SS PAS Suffixes and
Target System Parameters” in the MAINVIEW Common Customization
Guide.

These examples show how you can schedule EXECs, messages, ALERTs,
and other commands to targets with the TARGET keyword with the
appropriate IMFEXEC statement.

Examples

To send a message from one BBI-SS PAS to another target:

Use the IMFEXEC MSG statement in an EXEC with the TARGET keyword
and specify the name of a target that is defined in BBPARM member
BBIJNT00 for an MVS, CICS, IMS, or DB2 system or BBPARM member
BBINOD00 for an SS.

Task IMFEXEC statement

Send a message to another
target

IMFEXEC MSG TARGET(tgtname)

Send an EXEC to another
target

Either:
• IMFEXEC SELECT(execname) TARGET(tgtname)
• IMFEXEC SET REQ=CALLX

This IMFEXEC statement allows access to the timer facility to invoke a
time-initiated EXEC. The TARGET keyword allows you to specify
another target.

Send an ALERT to another
target

IMFEXEC ALERT TARGET(tgtname)

Send an IMF or MAINVIEW for
DB2 command to another
target

IMFEXEC IMFC TARGET(tgtname)

Note: You can also schedule an EXEC to run at another target with the program IMFSUBEX. Refer to
“Invoking REXX EXECs from Outside of AutoOPERATOR with IMFSUBEX” on page 6-9 for more information.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 6 Using Advanced Techniques with AutoOPERATOR EXECs 6-3

Scheduling Messages and EXECs across BBI-SS PASs
The message will be logged on the remote BBI-SS PAS Journal, and no entry
will be made on the originating system’s Journal. For example:

REXX EXEC example:

"IMFEXEC MSG ’MANUFACTURING DATABASE IS OFFLINE’
TARGET(CICSPROD)"

CLIST EXEC example:

IMFEXEC MSG ’MANUFACTURING DATABASE IS OFFLINE’
TARGET(CICSPROD)

sends a message from a local BBI-SS PAS to the BBI-SS PAS Journal of the
production BBI-SS PAS that is monitoring a CICS system called CICSPROD.

To schedule an EXEC from one BBI-SS PAS to another target:

Use the IMFEXEC SELECT command in an EXEC with the TARGET
keyword and specify the name of a target that is defined in BBPARM
member BBIJNT00 for an MVS, CICS, IMS, or DB2 system or BBPARM
member BBINOD00 for an SS.

REXX EXEC example:

"IMFEXEC SELECT EXEC(PAYROLL START) TARGET(CICSPROD)"

CLIST EXEC example:

IMFEXEC SELECT EXEC(PAYROLL START) TARGET(CICSPROD)

schedules an EXEC from the local BBI-SS PAS to the BBI-SS PAS where
the remote CICS production system is defined.

To send a time-initiated EXEC from one BBI-SS PAS to another target:

Use the IMFEXEC SET REQ=CALLX statement in an EXEC with the
TARGET keyword and specify the name of a target that is defined in
BBPARM member BBIJNT00 for an MVS, CICS, IMS, or DB2 system or
BBPARM member BBINOD00 for an SS. For example:

REXX EXEC example:

"IMFEXEC IMFC SET REQ=CALLX @HOURLY START=6:00:00 STOP=20:00:00",
 "I=02:00:00 TARGET(BBSYSA)"
BMC Software, Inc., Confidential and Proprietary Information

6-4 MAINVIEW AutoOPERATOR Advanced Automation Guide

Scheduling Messages and EXECs across BBI-SS PASs
CLIST EXEC example:

IMFEXEC IMFC SET REQ=CALLX @HOURLY START=6:00:00 + STOP=20:00:00
 I=02:00:00 TARGET(BBSYSA)

schedules an EXEC named @HOURLY to be run at two hour intervals
beginning at 6:00 am and ending at 8:00 pm on the target system called
BBSYSA.

To send an ALERT from one BBI-SS PAS to another target:

Use the IMFEXEC ALERT statement in an EXEC with the TARGET
keyword and specify the name of a target that is defined in BBPARM
member BBIJNT00 for an MVS, CICS, IMS, or DB2 system or BBPARM
member BBINOD00 for an SS.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 6 Using Advanced Techniques with AutoOPERATOR EXECs 6-5

Scheduling Messages and EXECs across BBI-SS PASs
REXX EXEC example:

"IMFEXEC ALERT NETW2",
 "’COMMUNICATION LINES DOWN: /N - DALLAS /N + - CHICAGO’ FUNCTION",
 "(ADD) QUEUE(NETWORK)",
 "PRIORITY(CRITICAL) COLOR(PINK) TARGET(NYCSYS)"

CLIST EXEC example:

IMFEXEC ALERT NETW2 +
 ’COMMUNICATION LINES DOWN: /N - DALLAS /N + - CHICAGO’ FUNCTION +
 (ADD) QUEUE(NETWORK) +
 PRIORITY(CRITICAL) COLOR(PINK) TARGET(NYCSYS)

sends a multi-line ALERT to a target called NYCSYS.

To send an IMF or MAINVIEW for DB2 command from one BBI-SS PAS
to another target:

Use the IMFEXEC IMFC statement in an EXEC with the TARGET keyword
and specify the name of a target that is defined in BBPARM member
BBIJNT00 for an MVS, CICS, IMS, or DB2 system or BBPARM member
BBINOD00 for an SS. For example:

REXX EXEC example:

"IMFEXEC IMFC PLOT ARVTR ABC IMSNAME=PRODIMS TARGET(SYSA1)"
"IMFEXEC IMFC PLOT CSAUT IMSNAME=IMSP TARGET(SYSA1)"
"IMFEXEC IMFC STAT IMSNAME=IMSP TARGET(SYSA1)"

CLIST EXEC example:

IMFEXEC IMFC PLOT ARVTR ABC IMSNAME=PRODIMS TARGET(SYSA1)
IMFEXEC IMFC PLOT CSAUT IMSNAME=IMSP TARGET(SYSA1)
IMFEXEC IMFC STAT IMSNAME=IMSP TARGET(SYSA1)

invokes synchronous analyzer services such as STAT, CLASQ, or PLOT for
automatic logging on a target called SYSA1.
BMC Software, Inc., Confidential and Proprietary Information

6-6 MAINVIEW AutoOPERATOR Advanced Automation Guide

Determining the Origin of a Command or EXEC
Determining the Origin of a Command or EXEC

The flexibility of the AutoOPERATOR EXEC processor allows an EXEC to
be initiated in many ways from many targets. Because commands and
EXECs can be issued from one target in one BBI-SS PAS to other targets
within or across BBI-SS PASs, you need to know how to determine the origin
of a command or EXEC.

Determining the origin of an EXEC is especially important for security
reasons because an EXEC can send a message or another EXEC to execute
some action on another target. The target should be able to take or not take
the action based on the origin of the sending target.

This means that the author of an EXEC must take special steps to ensure that
the EXEC’s action is appropriate for the situation. AutoOPERATOR provides
two variables that allow an EXEC to determine:

• The name of the originating BBI-SS PAS (IMFORGSS)

• The origin of the EXEC (IMFORGN)

The origin of commands within an EXEC is the same origin as that of the
EXEC.

These variables are defined in “TSO Variables Supplied by
AutoOPERATOR” on page 4-7.

Use these variables to determine, for example, if the caller is authorized to
execute the EXEC or to determine the user ID that is to receive any
informational messages returned from the EXEC. Both variables are
automatically available to all EXECs.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 6 Using Advanced Techniques with AutoOPERATOR EXECs 6-7

Determining the Origin of a Command or EXEC
Determining IMFORGN

The following table shows what origin (IMFORGN) is, depending on how
the EXEC was initially triggered:

Example - Determining the Origin of a User-Initiated EXEC

Scenario:

For this example, there are two BBI-SS PASs called CICM and CICP. CICP
has a CICS target system called CICPROD defined to it.

A BBI-TS user with user ID TSOUSR1 logs onto CICM and schedules an
EXEC named PAYROLL. The origin of the PAYROLL EXEC is TSOUSR1.

The PAYROLL EXEC may try to schedule another EXEC, called DATAB, to
the CICP subsystem which is monitoring CICPROD. The origin of
PAYROLL is CICM (the originating BBI-SS PAS of the EXEC) and it is
passed to CICP.

If the command or EXEC is: Then origin (IMFORGN) is:

User-initiated (from a BBI-TS) The user’s user ID

Time-initiated The BBI-SS PAS ID of the BBI-SS PAS that called the EXEC

BBI-SS PAS message-initiated The BBI-SS PAS ID of the BBI-SS PAS that issued the message

Externally initiated One of these:
• JOBNAME
• The RACF user ID
Refer to “Invoking REXX EXECs from Outside of AutoOPERATOR with
IMFSUBEX” on page 6-9 for more information about the origin for
externally initiated EXECs. See the definition of “ORIGIN”.

IMS message-initiated The IMS JOBNAME of the calling EXEC

IMS command from an IMS terminal The LTERM of the IMS terminal

CICS exception-message initiated The name of the CICS region for which the message was issued

CICS TD-message initiated The name of the CICS region for which the message was issued

DB2 exception-message initiated The name of the DB2 region for which the message was issued

MVS message-initiated One of these:
• JOB name
• STC name
• TSO name

EXEC-INITIATED The EXEC name of the calling EXEC

ALERT follow-up Either the user ID of the terminal session user or the value of ORIGIN
BMC Software, Inc., Confidential and Proprietary Information

6-8 MAINVIEW AutoOPERATOR Advanced Automation Guide

Invoking REXX EXECs from Outside of AutoOPERATOR with IMFSUBEX
Now, CICP must be able to determine if the origin called CICM is authorized
to invoke the DATAB EXEC by searching BBPARM for the authorization
member and validating the authority of CICM to run the EXEC.

Invoking REXX EXECs from Outside of
AutoOPERATOR with IMFSUBEX

EXECs can be invoked from any job running on a processor with a local
BBI-SS PAS address space or from a remote processor. This can be useful to
signal an event, such as the completion of an SMF Dump job running in the
background. To do this, an EXEC can be invoked from a batch program
running as a separate job step or from a callable subroutine within another
job or from TSO.

Use the AutoOPERATOR-supplied program called IMFSUBEX to submit
these kinds of EXECs. Keyword parameters passed to IMFSUBEX must
specify:

• A local BBI-SS PAS Address Space ID (ASID) or an asterisk (*)

• The name of the EXEC to be invoked

• Any operands to be passed to the EXEC

and optionally

• A different target

Example of a Parameter String Passed to IMFSUBEX

The following parameter string shows a complete example of all the keyword
parameters that can be passed to IMFSUBEX:

SS(subsys) EXEC(execname p1...pn) [TARGET(tgt) +
 ORIGIN(source) WAIT(YES) MSGLVLI(NONE)]

The parameters from this statement are described in the following table:
BMC Software, Inc., Confidential and Proprietary Information

Chapter 6 Using Advanced Techniques with AutoOPERATOR EXECs 6-9

Invoking REXX EXECs from Outside of AutoOPERATOR with IMFSUBEX
Keyword
Required/
Optional Description

SS Required Defines a BBI-SS PAS on the same processor as the invoking job. This BBI-
SS PAS initially receives and processes the request, sending it to SS(*) or
another BBI-SS PAS if TARGET is specified.
If specified as *, any BBI-SS PAS found on that processor is acceptable
(from one to four asterisks accepted). Also, a generic name can be given by
using positional (+) or generic (*) qualifiers, such as SS(+++P) or SS(P*).

EXEC|E Required Specifies the name of the EXEC and any parameters to be passed to the
symbolic variables defined as input in the EXEC.

TARGET|T Required Identifies a different target from the target system where the EXEC will be
invoked.
The specified TARGET should match a TARGET=(tgtname) parameter in
member BBIJNT00 of BBPARM. The EXEC is scheduled on the subsystem
that corresponds to the subsystem specified by the SS parameter. The
specified TARGET may also be an SSID which the original subsystem
communicates with.
If you omit the TARGET keyword, the default is the SSID name of the
subsystem that services this IMFSUBEX request. Then, you would not
need to specify a TARGET=SS in BBIJNT00. In this case, the AUTHJOB=
parameter of your BBPARM authorization member must be specified so
that the SSID is recognized as a valid target. For example, you can specify
the parameter as:
AUTHJOB=*
in the BBPARM authorization member. With an asterisk, the IMFSUBEX
TARGET(). parameter can contain any target specified in the BBPARM
BBIJNT00 member for the SS() specified subsystem.

ORIGIN|O Optional Specifies the source of the origin identifier used for security checking.
The default for this parameter is JOBNAME. The following values are valid:
• JOBNAME causes the jobname to be used as the security token.
• RACF causes the value supplied in the USER= keyword of the job card to

be used for the security token.
• USER causes the value supplied in the USER= keyword of the job card

to be used for the security token.
If RACF or USER is specified, IMFSUBEX checks for the existence of the
RACF ACEEUSRI for the address space and uses what is specified as the
security token. If RACF ACEEUSRI does not exist, the JCTUSER field from
the job control table (JCT) is used.

WAIT|W Optional Specifies that at completion of the EXEC, either the generated return code
of the EXEC or the condition code in batch is passed back from
IMFSUBEX.
You must use caution when using the TARGET keyword with WAIT. The
TARGET keyword reserves the VTAM link between the originating BBI-SS
PAS and the target BBI-SS PAS for the duration of the EXEC and accepts
no other requests (such as a user wanting to display an operational panel
against this system). If the EXEC goes into a loop, you run the risk of
occupying the link indefinitely and essentially rendering the connection
defunct.

MSGLVLI|M Optional Specifies the informational WTO messages to be suppressed. The default
issues all WTO messages.
To override the default, code: MSGLVLI(n) to suppress all informational
WTORs.
BMC Software, Inc., Confidential and Proprietary Information

6-10 MAINVIEW AutoOPERATOR Advanced Automation Guide

Invoking REXX EXECs from Outside of AutoOPERATOR with IMFSUBEX
Determining Return Codes from IMFSUBEX

A return code from IMFSUBEX indicates whether an EXEC was submitted
for processing to the requested BBI-SS PAS. It is provided as the step
completion code for a batch invocation, &LASTCC for TSO invocation, RC
for a REXX EXEC, and returned in R15 when invoked as a called subroutine.
Possible return codes are:

Codes Description of Condition Code

00 EXEC was submitted to the BBI-SS PAS

08 The requested BBI-SS PAS not available, or not at required service
level

12 Either BBI or the site security exit denied request

16 Error in the parm string

20 Severe error (program abend)

In IMFSUBEX, to distinguish between the return code generated by the
EXEC and the return code generated by IMFSUBEX, a value of 2048 is
added to the return code from the EXEC. Therefore, if the return code you
receive from IMFSUBEX is equal to or greater than 2048, then the EXEC
has been successfully executed and ended.

For example, IMFSUBEX can call an EXEC where the calling EXEC has
WAIT(YES) specified. This means the calling EXEC halts execution until the
called EXEC completes before it completes (also known as synchronous
execution). If IMFSUBEX calls such an EXEC and the EXEC passes a return
code of 4 when it completes, the overall return code that appears in the job
log for the batch job would be 2052.

Note: For the called EXEC to set a return code, the EXEC must use an
IMFEXEC EXIT statement to end the EXEC.

VTS Optional Causes IMFSUBEX to suppress all messages.

Note: If abbreviations for the keywords are used, they must be separated by blank spaces or commas.

Keyword
Required/
Optional Description
BMC Software, Inc., Confidential and Proprietary Information

Chapter 6 Using Advanced Techniques with AutoOPERATOR EXECs 6-11

Invoking REXX EXECs from Outside of AutoOPERATOR with IMFSUBEX
In another scenario, an AutoOPERATOR EXEC (for example, called
EXEC1) or a TSO CLIST running in an TSO address space can call the
IMFSUBEX subroutine which will schedule a second EXEC (for example,
called EXEC2). If EXEC2 sets a return code of 4, the &LASTCC variable
would contain a value of 2052. You can use the IMFEXEC EXIT statement
in an EXEC to set the return code.

The following example shows what happens when processing return codes
using the WAIT parameter.

REXX EXEC example:

ENAME=SMFDUMP
 .
 .
"CALL ’BBI.BBLINK(IMFSUBEX)’ ’SS(SSA1) EXEC("ENAME") WAIT(YES)’"
 IF RC LT 2048 THEN
 SAY ’EXEC’ ENAME ’NOT SCHEDULED RC=’RC
 ELSE
 SAY ’EXEC’ ENAME ’SUCCESSFULLY SCHEDULED RC=’RC-2048
 .
 .

CLIST EXEC example:

SET &ENAME=SMFDUMP
 .
 .
CALL ’BBI.BBLINK(IMFSUBEX)’ ’SS(SSA1) EXEC(&ENAME) WAIT(YES)’
SET &RC=&LASTCC IF &RC LT 2048 THEN +
 WRITE EXEC &ENAME NOT SCHEDULED RC=&RC
ELSE +
 WRITE EXEC &ENAME SUCCESSFULLY SCHEDULED RC=&RC-2048
 .
 .

If an IMFSUBEX is invoked to schedule an EXEC and the EXEC is not
found in the SYSPROC data set, the return code is 8. If the EXEC is found in
the SYSPROC data set and it is scheduled, upon termination, IMFSUBEX
adds the value of 2048 to the return code set in the EXEC that terminated.
BMC Software, Inc., Confidential and Proprietary Information

6-12 MAINVIEW AutoOPERATOR Advanced Automation Guide

Invoking REXX EXECs from Outside of AutoOPERATOR with IMFSUBEX
Submission from a Job Step

To submit an EXEC from a job step:

//stepname EXEC PGM=IMFSUBEX,PARM=’parm-string’
//STEPLIB DD DSN=BBI.BBLINK,DISP=SHR

To submit an EXEC STOPCICS that stops CICS:

//S1 EXEC PGM=IMFSUBEX,
// PARM=’SS(SSA1) EXEC(STOPCICS NOW)’

To pass different parameters to the EXEC depending on a previous job step’s
condition code:

REXX EXEC example:

//BACKUPD JOB (acct info),’BACKUP PROD-DB’,other job parms
//*
//* USER PROGRAM BACKS UP THE APPLICATION DATABASES
//*
//STEP1 EXEC PGM=userprog
//dd1 DD . . .
//dd2 DD . . .
//dd3 DD . . .
//*
//* BACKUP OK> RESTART DATABASES IN ONLINE SYSTEM
//*
//STEP2 EXEC PGM=IMFSUBEX,COND=(0,NE,STEP1),
// PARM=’SS(SSA1) EXEC(BACKUPDB 0 OK)’
//*
//* ERROR IN THE BACKUP BUT MOST WORK COMPLETED.
//* ATTEMPT TO RESTART DATABASES IN ONLINE SYSTEM,
//* SEND MESSAGE TO WARNING SCREEN
//*
//STEP3 EXEC PGM=IMFSUBEX,COND=(8,NE,STEP1),
// PARM=’SS(SSA1) EXEC(BACKUPDB 8 ERROR)’
//*
//* BACKUP ABENDED> IF DAYTIME, SEND MESSAGE TO
//* APPLICATION PROGRAMER WITH CICS SEND. IF
//* NOT, SEND MESSAGE TO WARNING SCREEN.
//*
//STEP4 EXEC PGM=IMFSUBEX,COND=ONLY,
// PARM=’SS(SSA1) EXEC(BACKUPDB ABEND FAILED)’
BMC Software, Inc., Confidential and Proprietary Information

Chapter 6 Using Advanced Techniques with AutoOPERATOR EXECs 6-13

Invoking REXX EXECs from Outside of AutoOPERATOR with IMFSUBEX
CLIST EXEC example:

//BACKUPD JOB (acct info),’BACKUP PROD-DB’,other job parms
//*
//* USER PROGRAM BACKS UP THE APPLICATION DATABASES
//*
//STEP1 EXEC PGM=userprog
//dd1 DD . . .
//dd2 DD . . .
//dd3 DD . . .
//*
//* BACKUP OK> RESTART DATABASES IN ONLINE SYSTEM
//*
//STEP2 EXEC PGM=IMFSUBEX,COND=(0,NE,STEP1),
// PARM=’SS(SSA1) EXEC(BACKUPDB 0 OK)’
//*
//* ERROR IN THE BACKUP BUT MOST WORK COMPLETED.
//* ATTEMPT TO RESTART DATABASES IN ONLINE SYSTEM,
//* SEND MESSAGE TO WARNING SCREEN
//*
//STEP3 EXEC PGM=IMFSUBEX,COND=(8,NE,STEP1),
// PARM=’SS(SSA1) EXEC(BACKUPDB 8 ERROR)’
//*
//* BACKUP ABENDED> IF DAYTIME, SEND MESSAGE TO
//* APPLICATION PROGRAMER WITH CICS SEND. IF
//* NOT, SEND MESSAGE TO WARNING SCREEN.
//*
//STEP4 EXEC PGM=IMFSUBEX,COND=ONLY,
// PARM=’SS(SSA1) EXEC(BACKUPDB ABEND FAILED)’

Submission from a TSO Session

From a TSO session, there are two ways to invoke IMFSUBEX:

• With the CALL command:

CALL ’BBI.BBLINK(IMFSUBEX)’ ’parm-string’

• As a TSO command:

IMFSUBEX parm-string

For example, to start the PAYROLL application from a TSO CLIST, you can
use either a CALL command:

CALL ’BBI.BBLINK(IMFSUBEX)’ ’SS(SSA1) EXEC(PAYROLL START)’
BMC Software, Inc., Confidential and Proprietary Information

6-14 MAINVIEW AutoOPERATOR Advanced Automation Guide

Invoking REXX EXECs from Outside of AutoOPERATOR with IMFSUBEX
or a TSO command:

IMFSUBEX SS(SSA1) EXEC(PAYROLL START)

Submission from within Another Program

IMFSUBEX can be called from within another program. IMFSUBEX does
not need to be authorized for this by the MVS Authorized Program Facility.
The AutoOPERATOR BBLINK library must be in the STEPLIB
concatenation. It should be the last library to avoid any negative impact on
performance.

The first example is an Assembler Language example; the second is a
COBOL.

 .
 .
 MAIN010 DS 0H
 LINK EP=IMFSUBEX,PARAM=(STRING)
 .
 .
 STRING DC C’SS(*) EXEC(SSTATUS)’,x’00’
With COBOL, a dynamic call is required.
 .
 .
 DATA DIVISION.
 01 PARM-STRING.
 05 PARM-DATA PIC X(30)
 VALUE ’SS(*) EXEC(STOPDB IIDB002A)’.
 05 PARM-END PIC X(1) VALUE LOW-VALUE.
 01 IMFSUBEX PIC X(8) VALUE ’IMFSUBEX’
 .
 .
 PROCEDURE DIVISION.
 .
 .
 CALL IMFSUBEX USING PARM-STRING.

Note: The parameter string can have up to a total of 256 bytes with the last
byte being hex ’00’.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 6 Using Advanced Techniques with AutoOPERATOR EXECs 6-15

Testing EXECs
Testing EXECs

You can use the information from any of the following sections and test your
EXEC before you implement it as a BBPROC member. AutoOPERATOR
also offers a full testing facility for you to test EXECs. See Chapter 3,
“Passing Parameters to REXX EXECs in AutoOPERATOR”.

However, you can also invoke your EXECs and minimize the effect they
might have by employing the techniques in the following sections.

The techniques provide you with a few ways to examine your EXECs:

Testing EXECs with IMFEXEC CNTL NOCMD Statements

By including the IMFEXEC statement IMFEXEC CNTL NOCMD, you can
write an EXEC and run the EXEC on your system without actually executing
the actions specified with the following IMFEXEC statements:

• IMFEXEC CMD

— IMFEXEC CICSTRAN

— IMFEXEC IMSTRAN

— IMFEXEC SUBMIT

— IMFEXEC RES EXIT

— IMFEXEC RES MCMD

— IMFEXEC RES VMCMD

Refer to Chapter 12, “Using the IMFEXEC Statements” for more
information about these individual statements.

You can execute an EXEC See

And not issue certain IMFEXEC statements, thereby minimizing
impact of certain EXECs to your system

“Testing EXECs with IMFEXEC CNTL
NOCMD Statements” on page 6-16

And examine variable substitution in the BBI-SS PAS Journal to
see if variables are resolving correctly

“Testing an EXEC with REXX Statement
TRACE R” on page 6-18 and “Testing
EXECs with SHARED Variables” on page 6-
20

And not issue any WTOs you might have included “Testing EXECs without Issuing WTOs” on
page 6-21
BMC Software, Inc., Confidential and Proprietary Information

6-16 MAINVIEW AutoOPERATOR Advanced Automation Guide

Testing EXECs
For example, you might use the IMFEXEC CMD to issue an MVS
command, such as activate a VTAM terminal, in an EXEC. You can execute
the EXEC and choose not to issue the MVS command by including the
IMFEXEC statement

REXX EXEC example:

"IMFEXEC CNTL NOCMD"

CLIST EXEC example:

IMFEXEC CNTL NOCMD

in the EXEC, prior to the IMFEXEC CMD statement.

You can track the results of the EXEC by examining the BBI-SS PAS Journal
which indicates that the MVS command was not executed because of the
IMFEXEC CNTL NOCMD statement.

Example

The following is a short example of how you might use IMFEXEC CNTL
NOCMD.

Figure 6-1 Example of Using IMFEXEC CNTL NOCMD

REXX EXEC example:

"IMFEXEC CNTL NOCMD"
"IMFEXEC CMD #V NET,ACT,ID=BB010A"

CLIST EXEC example:

IMFEXEC CNTL NOCMD
IMFEXEC CMD #V NET,ACT,ID=BB010A

The MVS command to vary VTAM terminal BB010A will not be executed
when this EXEC is invoked. In the BBI-SS PAS Journal, you will see a
message that looks like the following example:
BMC Software, Inc., Confidential and Proprietary Information

Chapter 6 Using Advanced Techniques with AutoOPERATOR EXECs 6-17

Testing EXECs
Figure 6-2 Example 1 of BBI-SS PAS Journal Entry

EM1101I FOLLOWING COMMAND BYPASSED DUE TO TEST MODE:
 IMFEXEC CMD #V NET,ACT,ID=BB010A

Testing EXEC-initiated EXECs with IMFEXEC CNTL NOCMD GLOBAL statements

You can test an EXEC-initiated EXEC and not execute the following
IMFEXEC statements by using the IMFEXEC CNTL NOCMD statement
with the parameter GLOBAL

• IMFEXEC CMD

— IMFEXEC CICSTRAN
— IMFEXEC IMSTRAN
— IMFEXEC SUBMIT
— IMFEXEC RES EXIT
— IMFEXEC RES MCMD
— IMFEXEC RES VMCMD

The statement

REXX EXEC example:

"IMFEXEC CNTL NOCMD GLOBAL"

CLIST EXEC example:

IMFEXEC CNTL NOCMD GLOBAL

will prevent these statements from being executed in the calling and in the
called EXEC of an EXEC-initiated EXEC.

Testing an EXEC with REXX Statement TRACE R

By using the REXX statement TRACE R in your EXEC, you can see all the
statements in the EXEC written to the BBI-SS PAS Journal and all the TSO
variables resolved as the EXEC executes. This is useful if you want to insure
that your TSO variables are being resolved as you expected. For a complete
discussion for using TRACE R to debug your REXX EXECs, refer to TSO/E:
REXX/MVS User’s Guide.
BMC Software, Inc., Confidential and Proprietary Information

6-18 MAINVIEW AutoOPERATOR Advanced Automation Guide

Testing EXECs
Enter the statement

TRACE R

at the line of the EXEC where you want to begin this test.

For example, if you were to invoke an EXEC called CALLRSTX and pass
two parameters to it, type:

%CALLRSTX USER1 DETAIL

at any Command line.

The following is an example of the substitution that is logged to the Journal:

Figure 6-3 Example 2 of BBI-SS PAS Journal Entry

14:59:24 EM0025I FOLLOWING MSG ISSUED FOR EXEC .. CALLRSTX ..
14:59:24 3 *-* ARG NAME PARM1 DETAIL GARBAGE
14:59:24 >>> "CALLRSTX"
14:59:24 >>> "USER1"
14:59:24 >>> "DETAIL"
14:59:24 5 *-* /* DISPLAY THE INPUT PARAMETERS */
14:59:24 6 *-* IMFEXEC MSG ’PARM1 =’ PARM1
14:59:24 >>> "IMFEXEC MSG PARM1 = USER1"
14:59:24 PARM1 = USER1
14:59:25 7 *-* IMFEXEC MSG ’DETAIL =’ DETAIL
14:59:25 >>> "IMFEXEC MSG DETAIL = DETAIL"
14:59:25 DETAIL = DETAIL

In this BBI-SS PAS Journal entry, you can see the substitution for the ARG
statement where the values you used to invoke the EXEC are passed to the
ARG statement at line 3). Line 5 shows a comment from the REXX EXEC
and lines 6 and 7 show the actual substitution of the variables.

Testing EXECs with TSO CLIST Statement CONTROL CONLIST
SYMLIST

By using the TSO CLIST statement CONTROL CON SYM in your EXEC,
you can see all of the EXEC statements that are written to the BBI-SS PAS
Journal and all of the TSO variables that are resolved as the EXEC executes.
This information is useful if you want to ensure that your TSO variables are
being resolved as you expected.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 6 Using Advanced Techniques with AutoOPERATOR EXECs 6-19

Testing EXECs
Enter the following statement:

CONTROL CON SYM

at the line of the EXEC where you want to begin this test. Examine the BBI-
SS PAS Journal after you invoke the EXEC. The following data is an
example of the substitution that is logged to the Journal:9’.

Figure 6-4 Example 2 of BBI-SS PAS Journal Entry

15:07:21 SET FLAG = NOTOK
15:07:21 DO WHILE &FLAG = NOTOK
15:07:21 DO WHILE NOTOK = NOTOK

Testing EXECs with SHARED Variables

Another technique you might use is to use the IMFEXEC VPUT statement to
put variables into the SHARED variable pool instead of the LOCAL variable
pool. For example, instead of using this statement

REXX EXEC example:

"IMFEXEC VPUT (WORD1 WORD2 WORD4) LOCAL"

CLIST EXEC example:

IMFEXEC VPUT (WORD1 WORD2 WORD4) LOCAL

you can use the following statement:

REXX EXEC example:

"IMFEXEC VPUT (WORD1 WORD2 WORD4) SHARED"

CLIST EXEC example:

IMFEXEC VPUT (WORD1 WORD2 WORD4) SHARED

By placing the variables WORD1, WORD2, and WORD3 to the SHARED
pool, you can verify the values that were substituted. Use the command:

.D V SHARED

to see how the variables were resolved in the SHARED pool. Once you have
verified them, you can then adjust your EXEC to put the variables back to the
LOCAL pool.
BMC Software, Inc., Confidential and Proprietary Information

6-20 MAINVIEW AutoOPERATOR Advanced Automation Guide

REXX EXEC Considerations
Testing EXECs without Issuing WTOs

If you are writing EXECs with the IMFEXEC WTO statement and you want
to run your EXEC without actually issuing the WTO, replace the IMFEXEC
WTO statement with IMFEXEC MSG and the message will be written to the
BBI-SS PAS Journal.

For example, if you have the following statement

REXX EXEC example:

"IMFEXEC WTO ’THE WORLD IS COMING TO AN END’ DESC(2)"

CLIST EXEC example:

IMFEXEC WTO ’THE WORLD IS COMING TO AN END’ DESC(2)

you can comment it out with comment marks (/*, */) and use:

REXX EXEC example:

"IMFEXEC MSG ’THE WORLD IS COMING TO AN END’"

CLIST EXEC example:

IMFEXEC MSG ’THE WORLD IS COMING TO AN END’

This message would be written to the BBI-SS PAS Journal.

REXX EXEC Considerations

If you have the IBM REXX Compiler installed at your site, AutoOPERATOR
supports tokenized REXX EXECs with the following considerations:

• The EXEC Management application does not display documentation
(DOC) fields for tokenized REXX EXECs in its display fields.

All comments are removed from the REXX EXEC by the compiler.

• The tokenized REXX EXECs must be stored in a SYSPROC library
concatenation.

AutoOPERATOR does not support compiled REXX EXECs.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 6 Using Advanced Techniques with AutoOPERATOR EXECs 6-21

Minimizing EXEC Processing Time
You can expect significant performance gains when you use tokenized REXX
EXECs over interpreted EXECs. These gains, however, depend on the
number of external calls (such as IMFEXEC commands) or subroutines used.

Wherever possible, REXX functions and subroutines should be built into the
parent REXX EXEC. This is much more efficient because it eliminates the
function or subroutine load time.

Once a REXX EXEC has been analyzed for performance and optimized,
subroutines called many times using IMFEXEC SELECT EXEC can be
copied internally to the parent and called using REXX CALL.

BBSAMP member AOXCPUST contains the tokenized version of
AOXCPUSI.

Minimizing EXEC Processing Time

In general, BMC Software recommends you use Rules to perform basic
automation tasks whenever possible. Rules are less prone to have errors and
use less CPU than EXECs. The use of EXECs should be considered only
after you have determined that the automation task cannot be accomplished
with a Rule.

For AutoOPERATOR to perform automation efficiently with EXECs, the
subsystem must be tuned to process EXECs as quickly as possible. The
desirable level of throughput (or the number of EXECs processed per minute)
for each site varies, depending on your automation requirements and the
design of the EXECs.

There are some things you can do to ensure EXECs run more efficiently:

• Fix the dispatching priority of the subsystem.

The subsystem (SS) must be run at a fixed dispatching priority. The
priority of the SS must be higher than (or equal to) the regions that
AutoOPERATOR is managing (for example: CICS, IMS, JES2). This
ensures AutoOPERATOR can quickly respond to events in these regions.

• Allocate the correct number of EXEC threads.

Adjust the number of EXEC threads (with the MaxNorm and MaxHigh
parameters in BBPARM member AAOEXP00) to the minimum number
required to achieve the level of throughput you want.
BMC Software, Inc., Confidential and Proprietary Information

6-22 MAINVIEW AutoOPERATOR Advanced Automation Guide

Minimizing EXEC Processing Time
• Use the OS/390 Virtual Lookaside Facility (VLF) service which is
available with OS/390 (MVS Version 3 and later).

Using VLF allows AutoOPERATOR to perform EXEC processing with a
minimum of I/O activity, and reduced I/O activity leads to less system
overhead and improved performance.

Refer to the IBM publication OS/390 Initialization and Tuning Reference
for information about the VLF service. Refer to “Using VLF to Improve
Performance” on page 6-24 for more information about
AutoOPERATOR EXECs and VLF.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 6 Using Advanced Techniques with AutoOPERATOR EXECs 6-23

Minimizing EXEC Processing Time
Using VLF to Improve Performance

This section contains information about AutoOPERATOR and VLF.

Implementing VLF

BMC Software recommends that you store your EXECs in VLF using the
IKJEXEC VLF class. For more information about the IKJEXEC class, refer
to the IBM publication TSO Extensions Version 2, Customization. This
manual also contains some information about implementation considerations
that you should review.

Because there are some known problems with running VLF and TSO, you
must make sure all recommended IBM PTFs are applied.

Warning! Loading your EXECs from VLF is transparent to the EXEC
Management application. However, EXECs stored in VLF cache
cannot be tested more than once per SS session by the
AutoOPERATOR EXEC Testing Facility.

The first time you issue the line command T to test the EXEC,
the Testing Facility gets control of the EXEC with TSO OPEN
SYSPROC and the test is run. However, subsequent attempts to
test the EXEC cause the EXEC to be scheduled and the Testing
Facility is bypassed.

This occurs because once the EXEC is read into the VLF cache,
the EXEC Testing Facility is not able to get control over the
execution of the EXEC.

VLF and EXECs

Ordinarily when you execute an EXEC, for each EXEC, TSO will OPEN
SYSPROC, read all the EXEC records into memory, and CLOSE SYSPROC.
If the EXEC is present in VLF cache, then these three operations are
eliminated, which means there is a considerable reduction in both CPU and
I/O (and less DASD device and channel contention) when EXECs are in the
VLF cache.

This is because VLF caches individual SYSPROC data sets. You must
determine the appropriate amount of virtual storage to devote to the cache for
this VLF class, which is specified with the MAXVIRT parameter. The
MAXVIRT parameter is documented in the IBM publication OS/390
Initialization and Tuning Reference.
BMC Software, Inc., Confidential and Proprietary Information

6-24 MAINVIEW AutoOPERATOR Advanced Automation Guide

Minimizing EXEC Processing Time
Note that if the specified cache is too small and too many EXECs are cached,
thrashing in the cache can occur and performance could actually be worse
than when EXECs are read directly from DASD. One possible remedy is for
you to move the EXECs that are used more frequently into a smaller data set,
place this data set first in the SYSPROC concatenation, and have VLF cache
this data set.

Using the SYSEXEC DD:

If the SYSEXEC DD is present, TSO will search it first for each EXEC, and
VLF has no effect on SYSEXEC. Therefore, BMC Software recommends you
do not use the SYSEXEC DD.

Restrictions:

Note carefully the restrictions and considerations for updating VLF cached
libraries, both on single and multiple MVS images. For more information,
refer to the IBM publication TSO/E, Command Reference for documentation
for the TSO VLFNOTE command.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 6 Using Advanced Techniques with AutoOPERATOR EXECs 6-25

Minimizing EXEC Processing Time
BMC Software, Inc., Confidential and Proprietary Information

6-26 MAINVIEW AutoOPERATOR Advanced Automation Guide

8

Chapter 7 Accessing DB2 from
AutoOPERATOR

This chapter describes how you can access DB2 from AutoOPERATOR with
REXX EXECs if you have the BMC Software product RxD2/LINK product
installed.

Accessing DB2 from REXX EXECs with RxD2/LINK

If RxD2/LINK is installed in the BBI-SS PAS, AutoOPERATOR REXX
EXECs can issue dynamic SQLs to access and manipulate DB2 data. The
REXX EXEC can ADDRESS DB2 as it can ADDRESS MVS.

This added facility allows:

• Accessing the DB2 catalog for information about DB2 objects (such as
tables and plans)

• Accessing other DB2 tables to read external data that can govern
AutoOPERATOR procedures

• Storing data collected by the EXECs for later queries and reporting using
the full function of SQL

Refer to the RxD2/LINK User Guide and Reference for more information
about customization and usage.

Note: The BBI-SS PAS requires authorization for the DB2 functions to be
performed.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 7 Accessing DB2 from AutoOPERATOR 7-1

RxD2/LINK Common Functions for REXX EXECs
RxD2/LINK Common Functions for REXX EXECs

Several EXECs are delivered with RxD2/LINK to provide commonly used
functions and reduce user coding. They are ready to use and can be invoked
from any other EXEC.

Table 7-1 Common Function EXECs (Part 1 of 2)

Common Function
EXECs Description

 RXBKLINE(mxlen,iline) This EXEC truncates the character text in ILINE at a word boundary to a
length no greater than MXLEN. It is useful in displaying a long SQL
statement.
If either argument is null, a null string is returned.
RXBKLINE(9,’This is an example’) -> ’This is’
RXBKLINE(9,’This too,is an example’) -> ’This too,’
RXBKLINE(72,’This is an example’) -> ’This is an
example’

 RXQCHAR(wname,wdata) This EXEC builds a predicate for the character-type column WNAME from
the string entered as a qualifier in WDATA. It is used to generate SQL
predicates from user input specifying a selection qualifier for a column of a
table.
RXQCHAR(’NAME’,’DSN’) -> "NAME = ’DSN’"
RXQCHAR(’NAME’,’DSN*’) -> "NAME LIKE ’DSN%’"
RXQCHAR(’NAME’,’D+N’) -> "NAME LIKE ’D_N’"
RXQCHAR(’NAME’,’NULL’) -> "NAME IS NULL’"
RXQCHAR(’NAME’,’^NULL’) -> "NAME IS NOT NULL"
RXQCHAR(’NAME’,"^=’DSN’") -> "NAME ^= ’DSN’"
RXQCHAR(’NAME’,"<’DSN’") -> "NAME < ’DSN’"
RXQCHAR(’NAME’,">’DSN’") -> "NAME > ’DSN’"

RXQNUM(wname,wdata) This EXEC builds a predicate for the numeric-type column WNAME from the
string entered as a qualifier in WDATA. It is used to generate SQL predicates
from user input specifying a selection qualifier for a column of a table.
RXQNUM(’NAME’,’123’) -> "NAME = 123’"
RXQNUM(’NAME’,’<123’) -> "NAME < 123’"
RXQNUM(’NAME’,’^=123’) -> "NAME ^= 123’"

RXSAMPEX This is a sample EXEC to process SQL statements or DB2 commands and
display the results in line mode. It does not require ISPF and therefore is
usable in any address space; for example, batch jobs, NetView, or
AutoOPERATOR EXECs.
Note: The RXSAMPEX EXEC is invoked by the two sample batch jobs,
RXBATSQL and RXBATCMD, that are distributed as members in BBSAMP.
BMC Software, Inc., Confidential and Proprietary Information

7-2 MAINVIEW AutoOPERATOR Advanced Automation Guide

RxD2/LINK Special Functions for REXX EXECs
RxD2/LINK Special Functions for REXX EXECs

Several special functions are provided with RxD2/LINK that are required or
useful when accessing DB2.

In REXX, you invoke a function by issuing:

V1 = FUNC(ARG1,ARG2)

where V1 is the variable into which the function FUNC places the result.

RXSETSQL This EXEC constructs an SQL statement from the text pointed to by a cursor
in an ISPF/PDF edit panel.

SQL = RXSETSQL()

A = WORDPOS(’INTO’,SQL)

RXVODS(wdsn) This EXEC verifies that the data set name specified in WDSN is valid. It
checks that the data set exists and that the data set is either sequential or a
PDS with a member name specified. The EXEC is used to verify an output
data set before the data set is used.
 WMSG = RXVODS($VLSTDS)
 IF WMSG = ’OK’ THEN DO
 "ALLOC DD(LCOUT) DA("$VLSTDS") SHR REUSE"
 IF RC = 0 THEN NOP
 ELSE WMSG = ’ALLOC ERROR’ RC
 END /* WMSG = OK THEN */

Table 7-1 Common Function EXECs (continued) (Part 2 of 2)

Common Function
EXECs Description
BMC Software, Inc., Confidential and Proprietary Information

Chapter 7 Accessing DB2 from AutoOPERATOR 7-3

RxD2/LINK Special Functions for REXX EXECs
Table 7-2 Special Functions (Part 1 of 3)

Special Function Description

CONVSTCK(tod) Converts the 8-byte TOD clock into display format of YYYYDDD HHMMSSTH. Valid
from 1/1/1988 onward. The 8-byte TOD format is such that bit 51 equals 1
microsecond (see the IBM publication 370 Principles of Operations).
TSTMP = ’A42AE3F94CE5BB31’X
SAY "TIMESTAMP=" CONVSTCK(TSTMP)

DEFAULT None

RETURN ’value’ if function completes successfully

NOGO ’reason’ if function fails for the reason given

CTOD(tod) Converts the 8-byte TOD clock time into display format of HHMMSSTH. The 8-byte
TOD format is such that bit 51 equals 1 microsecond (see the IBM publication 370
Principles of Operations).
CPUT = ’0000000160B79C00’X
SAY "CPUT=" CTOD(CPUT)

DEFAULT None

RETURN ’value’ if function completes successfully

NOGO ’reason’ if function fails for the reason given

F2C(f) Do a floating point conversion on variable f and return the floating point number in
display format.
/* TEST F2C */
A = ’4498765432100000’X
SAY "F2C=" F2C(A)

DEFAULT None

RETURN ’value’ if function completes successfully

NOGO if function fails
BMC Software, Inc., Confidential and Proprietary Information

7-4 MAINVIEW AutoOPERATOR Advanced Automation Guide

RxD2/LINK Special Functions for REXX EXECs
GBLVAR
(GETV,varname)
(SETV,varname)
(DROP,varname)
(UPDV,varname)

Create and manage the global variable environment. The global variable
environment is created at first use. Subsequent environment shares the same
environment. The environment is destroyed at the EOT of the task that created the
environment.

GETV Gets the global variable varname and places its
content in the local variable varname.

SAY "TESTVAR=" TESTVAR
SAY "GBLVAR(’GETV’,’TESTVAR’)=" GBLVAR(’GETV’,’TESTAVR’)
SAY "TESTVAR=" TESTVAR

SETV Gets the local variable varname and creates a
global variable varname. If the global variable
varname already exists, it is not replaced.

TESTVAR= "TEST VARIABLE FOR TEST GBLVAR"
SAY "GBLVAR(’SETV’,’TESTVAR’)=" GBLVAR(’SETV’,’TESTVAR’)

DROP Drops the global variable varname.

UPDV Gets the local variable varname and updates the
global variable varname. If the global variable
varname does not exist, the function is treated like
"SETV".

DEFAULT None

RETURN OK if function completes successfully

OK ’warn’ if function completes with a warning
NOGO ’reason’ if function fails for the reason given

P2C(p) Do an unpack on variable p and return the packed decimal number in display format.
/* TEST P2C */
A = ’123456789C’X
SAY "P2C=" P2C(A)

DEFAULT None

RETURN ’value’ if function completes successfully

NOGO if function fails

Table 7-2 Special Functions (continued) (Part 2 of 3)

Special Function Description
BMC Software, Inc., Confidential and Proprietary Information

Chapter 7 Accessing DB2 from AutoOPERATOR 7-5

RxD2/LINK Special Functions for REXX EXECs

UENV(hcename,pgm) Identify to REXX Host Command Environment (HCE) called hcename, such that
pgm will receive control for ADDRESS hcename. The hcename currently is required
to be DB2.
SK = UENV(DB2)
IF SK ^= "OK" THEN DO
 SAY "UNABLE TO ENABLE RXDB2"
 EXIT 16
 END

DEFAULT hcename = DB2

pgm = RXDB2

RETURN OK if function completes successfully

NOGO if function fails

VARSPF(varname) A compound variable (AA.1) cannot be used in an ISPF dialog. Function
VARSPF(AA.1) creates a new simple variable AA1 containing the same data as
AA.1 so it can be used in an ISPF dialog.
The function first compresses out the period(s) in the compound variable name and
then ensures that the resulting variable name is no more than 8 characters long.
IF DATATYPE(SQLEMSG.0) = NUM THEN
 DO I = 1 TO SQLEMSG.0
 SQLEM.I = SPACE(SQLEMSG.I)
 A = VARSPF("SQLEM."I)
 END /* I LOOP */

DEFAULT None

RETURN OK if function completes successfully

NOGO if function fails
TRUNCATED if function has to truncate the variable name

WAITSEC(n) Wait n seconds before continuing to process.
DO I = 1 TO 5
 A = WAITSEC(2) /* WAIT 2 SECONDS */
 SAY "LOOP COUNT=" I "TIME=" TIME()
 END

DEFAULT n = 5 (seconds)

RETURN OK if function completes successfully

NOGO if function fails

Table 7-2 Special Functions (continued) (Part 3 of 3)

Special Function Description
BMC Software, Inc., Confidential and Proprietary Information

7-6 MAINVIEW AutoOPERATOR Advanced Automation Guide

RxD2/LINK Special Functions for REXX EXECs
BMC Software, Inc., Confidential and Proprietary Information

Chapter 7 Accessing DB2 from AutoOPERATOR 7-7

RxD2/LINK Special Functions for REXX EXECs
BMC Software, Inc., Confidential and Proprietary Information

7-8 MAINVIEW AutoOPERATOR Advanced Automation Guide

20
Chapter 8 Interacting with VTAM
Applications with OSPI

This chapter describes the AutoOPERATOR Open Systems Procedural
Interface (OSPI) feature and how to use it to interact with VTAM-based
applications and for automation tasks.

Overview

AutoOPERATOR provides the Open Systems Procedural Interface (OSPI) as
an interface to VTAM-based products. OSPI provides a means for REXX- or
CLIST-based automation procedures to interface with any LU2 (3270)
VTAM application that uses full screens to communicate with users.

With OSPI, AutoOPERATOR has logon capabilities and complete access to
any VTAM application’s data stream. In this way, AutoOPERATOR can
interact with the application by analyzing the output data and issuing the
VTAM application’s own commands.

By automatically interfacing with critical VTAM applications and simulating
a user at a VTAM terminal, OSPI can communicate with various data center
software products and decrease the number of physical terminals required.

OSPI includes three components:

• IMFEXEC commands that allow EXECs to communicate with VTAM
applications

• A Scripting application that automatically generates IMFEXEC
command statements by recording your interactions with a terminal

• A Debugging facility
BMC Software, Inc., Confidential and Proprietary Information

Chapter 8 Interacting with VTAM Applications with OSPI 8-1

When to Use OSPI
These components are described in the following sections:

• “OSPI Sessions” on page 8-3 provides a general overview about how the
Scripting application generates OSPI EXECs.

• “OSPI Scripting Application” on page 8-5 provides detailed information
about using the Scripting application.

• “Terminating the Application” on page 8-13 describes how to customize
EXECs generated by the Scripting application.

• “OSPI Debugging Facilities” on page 8-17 describes the Debugging
facility.

When to Use OSPI

AutoOPERATOR communicates with MVS and its subsystems using
standard software interfaces; for example, the Subsystem Interface (SSI) is
used to communicate with MVS. However, many VTAM applications do not
provide a software interface but require use of a 3270 terminal instead.

The OSPI facility provides access from an AutoOPERATOR EXEC to these
VTAM applications without requiring a physical 3270 terminal. OSPI allows
most 3270-operator actions to be emulated by an EXEC. Use this facility
when you need to access VTAM applications that ordinarily require an
operator to actually log on to a 3270 terminal.

How to Use OSPI

The first step in automating a function using OSPI is to use the Scripting
application to record the appropriate interactions with a VTAM application in
an EXEC. The generated EXEC contains only OSPI IMFEXEC commands.
It will not contain any conditional logic or other commands. Refer to
Chapter 12, “Using the IMFEXEC Statements” for descriptions of the OSPI
IMFEXEC command statements.

Depending upon the function being implemented, you may need to further
customize the generated EXEC by combining the appropriate logic and
commands with the OSPI IMFEXEC commands.

After the EXEC has been customized, it is ready to be executed. As with any
EXEC, it should be thoroughly tested before it is installed into your
production system.
BMC Software, Inc., Confidential and Proprietary Information

8-2 MAINVIEW AutoOPERATOR Advanced Automation Guide

Customization Required to Use OSPI
Customization Required to Use OSPI

A session between OSPI and a VTAM application requires that OSPI
function as a 3270 terminal. For OSPI to do this, some OSPI virtual terminals
must be defined to VTAM. In addition, some applications, such as CICS and
IMS, might require local definitions for the OSPI terminals. Finally, your site
must be running a release of VTAM of V3 or higher.

These definitions must be implemented and activated prior to using the
Scripting application or executing an OSPI EXEC. See the MAINVIEW
AutoOPERATOR Customization Guide for more information about VTAM
and application definitions required for OSPI virtual terminals.

OSPI Sessions

There are two types of OSPI sessions: scripting sessions and EXEC sessions.
You can use both types of sessions when using OSPI to automate a function.
Normally, scripting sessions are used first to record the appropriate
interactions with VTAM applications in EXECs. Then, EXEC sessions are
used when the functions are automatically performed by AutoOPERATOR.

All OSPI sessions follow the same basic flow regardless of the session type,
the application they are interfacing with, or the task they are performing:

Step 1 A session is established between an OSPI virtual terminal and a VTAM
application.

Step 2 Data is then exchanged between the virtual terminal and the application.

Step 3 The session is terminated.

All of these tasks are accomplished using either the Scripting application or
IMFEXEC command statements in an EXEC.

Establishing a Session

To initiate a scripting session, specify the parameters on the OSPI Script
Development panel and press ENTER. The Scripting application uses these
parameters to establish the scripting session and to generate a corresponding
IMFEXEC LOGON command. This enables the generated EXEC to log on
to the same VTAM application with the same parameters used in the scripting
session.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 8 Interacting with VTAM Applications with OSPI 8-3

OSPI Sessions
Exchanging Data

After a successful logon, the Scripting application automatically receives the
first buffer from the VTAM application. The first panel output by the VTAM
application is displayed under the TS.

No additional IMFEXEC commands are generated at this point because the
previously generated IMFEXEC LOGON command automatically receives
the output sent by the application. When the generated EXEC is executed,
control is not returned to the EXEC until the first complete buffer image is
received and available for processing by the EXEC.

As you interact with the application by sending and receiving new data, the
Scripting application records these actions using IMFEXEC TYPE and
IMFEXEC TRANSMIT commands. This enables the generated EXEC to
automatically perform the same functions as a real terminal user might.

Terminating a Session

When you terminate the session with the VTAM application, the OSPI
Session Termination panel is displayed. You then have the option of saving or
cancelling the script. If the script is saved, an IMFEXEC LOGOFF command
is generated, the EXEC is saved in the first data set of your SYSPROC
concatenation, and the command .RESET BLDL SYSPROC is automatically
done.
BMC Software, Inc., Confidential and Proprietary Information

8-4 MAINVIEW AutoOPERATOR Advanced Automation Guide

OSPI Scripting Application
OSPI Scripting Application

User interaction with OSPI is simplified with the Scripting application. The
Scripting application records your keystrokes as you make them, and you can
use this Scripting application to create complex procedures to drive 3270
applications without writing a line of procedural code.

The OSPI Scripting application can create procedures in either CLIST or
REXX.

Accessing the OSPI Scripting Application

Access the Scripting application by selecting option 7, OSPI, from the
PRIMARY OPTION MENU. The OSPI Script Development panel, shown in
Figure 8-1 on page 8-6, is displayed.

The following topics provide details about accessing a VTAM application
using the OSPI Scripting application.

To learn about See

Specifying the appropriate data for establishing a session “OSPI Script Development Panel” on
page 8-6

Differences you might see when accessing an application under the
Scripting application versus directly through VTAM

“Interacting with the Application” on
page 8-8

Making data in the terminal buffer available to a generated EXEC “Retrieving Screen Data into
Variables” on page 8-12

The options available for ending an OSPI session with an application “Terminating the Application” on
page 8-13
BMC Software, Inc., Confidential and Proprietary Information

Chapter 8 Interacting with VTAM Applications with OSPI 8-5

OSPI Scripting Application
OSPI Script Development Panel

The OSPI Script Development Panel is used to specify the parameters, such
as the application to be accessed and the terminal type to be emulated, for
establishing the scripting session. Figure 8-1 shows default values in all
fields.

Figure 8-1 OSPI Script Development Pane
l

Following is a description of each field:

Member name
Name to be used when the generated EXEC is stored in the SYSPROC data
set.

Note: If multiple data sets are concatenated to the SYSPROC DD, the
member is stored in the first data set in the concatenation.

Application for LOGON
Name of the application (as specified in a VTAM APPL statement) you want
to establish a session with. VTAM interpret tables are not used so this name
may differ from the name you enter when logging on at a terminal.

Overwrite existing member
If the member named in the Member name field already exists, verify that
you want to overwrite it.

BMC SOFTWARE ------------------ OSPI Script Development --------- AutoOPERATOR
COMMAND ===> TGT ===> SYSB
 DATE --- 01/01/15
 TIME --- 13:15:51

 To begin a Scripting Session, specify the following and press ENTER

 Member name ===> OSPI Application for LOGON ===>

 Overwrite existing member ===> Y Hot key ===> PF 11 (01-12)

 Logmode to use ===> D6327802 Debug ===> N

 User data ===>

 ACB to use ===> Language Option ===> CLIST (REXX/CLIST)

 Process initial receive ===> Y

Press END to abort request
BMC Software, Inc., Confidential and Proprietary Information

8-6 MAINVIEW AutoOPERATOR Advanced Automation Guide

OSPI Scripting Application
Hot key
ISPF may process certain program function (PF) keys, such as SPLIT and
SWAP, before passing them to OSPI. For this reason, you must use the OSPI
hot key in place of any PF or PA keys. The default hot key is PF11. You can
reassign it to any non-ISPF specific PF key.

When you press the hot key, a hot key pad is displayed to allow you to
specify which PF/PA keystroke should be passed to the application.

See “Program Function Keys” on page 8-9 for information about using
the hot key pad.

Logmode to use
The logmode associates certain terminal characteristics, such as support for
extended attributes (color, reverse video, and so on) and screen size, with the
OSPI terminal emulation. The type of terminal that is emulated may affect
the application displays seen by the scripting user and the data available to
the generated EXEC. See “Extended Attributes” on page 8-9 for more
information about selecting an appropriate logmode.

The logmode must be a valid VTAM MODEENT in the MODETAB
associated with the OSPI ACB (specified in the ACB to USE field). The
default is a 3278 Model 2, specified as D6327802. This is the
recommended logmode to use.

Debug
Specifies whether or not debugging information will be written to the BBI-SS
PAS Journal log and to the OSPISNAP data set.

User data
Text (such as userid) to be passed to the application during session
establishment.

ACB to use
ACB to be used for the OSPI virtual terminal. If you do not specify an ACB,
an ACB is selected from the OSPI ACB pool. The ACB generated on this
panel is intentionally not carried forward into the generated EXEC.

See the MAINVIEW AutoOPERATOR Customization Guide for more
information about ACB definitions required for OSPI virtual terminals.

Language Option
Specifies the CLIST language to be used in the generated EXEC where:

— Specifying REXX causes a REXX EXEC to be generated.

— Specifying CLIST causes a TSO CLIST to be generated.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 8 Interacting with VTAM Applications with OSPI 8-7

OSPI Scripting Application
Process Initial Receive
Indicates whether or not OSPI should attempt to receive an initial panel
(buffer) before allowing data to be entered and sent to the application. The
default is Y and results in OSPI waiting for the first panel (buffer) to be
received from the application before allowing the terminal operator to enter
data.

In most cases, the default should be used. However, when logging on to
an application that does not display an initial panel before allowing the
terminal user to enter data (for example, a CICS system without a "Good
Morning" transaction), you must specify N to avoid an unending wait.
Refer to “Receive Complete Detection” on page 8-11 for more
information.

After you press ENTER, OSPI attempts to establish a session using the
parameters specified. If a session is successfully established, the first panel
output by the VTAM application is displayed under the TS. You can now
interact with the application to perform and record the function you want to
automate with an OSPI EXEC.

If a session cannot be established, the OSPI Session Termination panel is
displayed. See “OSPI Session Termination Panel” on page 8-19 for
information about interpreting the VTAM error codes displayed on the panel.

Interacting with the Application

Most of the time, accessing an application under the OSPI Scripting
application is identical to accessing the same application directly through
VTAM. However, there are some differences in the following areas:

• 3270 attributes, such as extended color or extended highlighting
• Program function (PF) keys
• ISPF jump function
• Screen size and usage
• Receiving complete detection

3270 Attributes

Displays that contain extended color or extended highlighting attributes may
look slightly different when executing under OSPI because OSPI does not
honor these attributes. Data streams containing these attributes are not
properly interpreted and may cause errors, such as treating fields with
extended attributes as protected.
BMC Software, Inc., Confidential and Proprietary Information

8-8 MAINVIEW AutoOPERATOR Advanced Automation Guide

OSPI Scripting Application
These attributes are not honored because extended attributes do not occupy a
position in the screen buffer and, therefore, OSPI EXECs cannot benefit from
their settings.

Extended Attributes

OSPI terminal emulation uses the characteristics associated with the terminal
LOGMODE specified on the OSPI Script Development panel and, ultimately,
on the generated IMFEXEC LOGON command. Therefore, always choose a
LOGMODE that designates the least amount of terminal capabilities
possible.

Some applications use reverse video to create bars on a screen whenever the
LOGMODE indicates that the terminal supports extended attributes. OSPI
EXECs would simply see blanks in the field that contained the reverse video
bars. However, the same application may use character data instead of the
reverse video bars when the LOGMODE indicates that the terminal does not
support extended attributes.

Program Function Keys

The OSPI Scripting application may execute under ISPF, and thus ISPF may
process certain program function (PF) keys, such as SPLIT and SWAP,
before passing them to OSPI. For this reason, it is necessary to use the OSPI
hot key in place of any PF or PA keys. The default hot key is PF11. It may be
reassigned to any non-ISPF specific PF key.

When you press the hot key, the OSPI Transmission Keystroke panel, shown
in Figure 8-2, is displayed. Enter the option number associated with the PF or
PA key you want to transmit to the application.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 8 Interacting with VTAM Applications with OSPI 8-9

OSPI Scripting Application
Figure 8-2 OSPI Transmission Keystroke Pane
l

ISPF Jump Function

The OSPI Scripting application is designed to execute under ISPF. Therefore,
you must be careful when entering an equal sign (=) into any application
screen OSPI displays.

When an equal sign is entered under ISPF, ISPF passes PF3 to the application
as an indication that the application should terminate. OSPI does not process
the PF3 but instead passes it to the application being scripted. ISPF continues
passing PF3 until OSPI terminates. OSPI will continue passing PF3 to the
scripted application and will never terminate. Therefore, attempting to enter
the ISPF equal sign under the Scripting application may cause the TS to loop.

BMC Software ------------- OSPI transmission keystroke ---------- AutoOPERATOR
COMMAND ===>

 Please select action from list below:

 Keystrokes:
 PF1 - 1 PF13 - 13 ENTER - 25
 PF2 - 2 PF14 - 14 CLEAR - 26
 PF3 - 3 PF15 - 15
 PF4 - 4 PF16 - 16 PA1 - 27
 PF5 - 5 PF17 - 17 PA2 - 28
 PF6 - 6 PF18 - 18 PA3 - 29
 PF7 - 7 PF19 - 19
 PF8 - 8 PF20 - 20 Other Options:
 PF9 - 9 PF21 - 21
 PF10 - 10 PF22 - 22 Cancel Session - 30
 PF11 - 11 PF23 - 23 Read variable - 31
 PF12 - 12 PF24 - 24 Attempt read - 32

 Variable name ===>
 SHARED variable name ===>
 Select Option ===>

Press PF3 to abort this function

 Select Option ===>

Press PF3 to abort this function
BMC Software, Inc., Confidential and Proprietary Information

8-10 MAINVIEW AutoOPERATOR Advanced Automation Guide

OSPI Scripting Application
Screen Size and Usage

The OSPI Scripting application is designed to execute under ISPF. An
application, such as OSPI, executing under ISPF must define the attributes
associated with its display to avoid having a random attribute value assigned.
Since ISPF does not support extended attributes, a position on the screen is
always required to specify an attribute. The OSPI Scripting application uses
line one, column one to specify an attribute and avoid having some random
assignment.

With the Scripting application, you cannot enter data in line one, column one.
Data is also not displayed in line one, column one. The first 80 bytes of
output are shifted one byte to the right and byte 80 is not displayed if the
buffer image to be displayed does not start out with an attribute byte. The
date is shifted back one byte to the left before transmission to the application.

This restriction does not apply to OSPI EXECs. If necessary, EXECs
generated by the Scripting application can be manually edited to specify that
data be entered in row one, column one.

In addition, OSPI can only support screen sizes between 24 lines and 43 lines
with a column width of 80. Any other screen size specified in a LOGMODE
used by an OSPI virtual terminal causes errors.

Receive Complete Detection

When you send a new screen of data to the application, the Scripting
application automatically tries to receive new data from the application. OSPI
does not unlock the keyboard until the application has finished sending data.

Depending on the protocol used by an application, either the Change
Direction Indicator (CDI) or End Bracket (EB) is used to determine when the
application is finished sending data. If an application sends one of these
indicators prematurely, it may be necessary to explicitly request that an
additional receive be issued to receive data sent after the erroneous CDI or
EB.

The OSPI Transmission Keystroke panel is used to request that an additional
receive be issued. To do this:

Step 1 Use the OSPI hot key to access the keystroke panel.

Step 2 Select option 32, ATTEMPT READ, when the panel is displayed.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 8 Interacting with VTAM Applications with OSPI 8-11

OSPI Scripting Application
If ATTEMPT READ is not issued, the data sent after the CDI/EB is not
retrieved until after the next transmission of data from OSPI to the
application.

Each time an ATTEMPT READ is issued, an IMFEXEC RECEIVE
command is generated. IMFEXEC RECEIVE is not normally needed
because OSPI automatically receives new data after IMFEXEC TRANSMIT.

Examples of applications that may require this special processing are
Netview and VM/CMS.

Retrieving Screen Data into Variables

In addition to the IMFEXEC commands necessary to communicate with
VTAM applications, the Scripting application can also generate the
IMFEXEC SCAN commands necessary to retrieve data from the screen
buffer into a variable.

You can use the OSPI Transmission Keystroke panel to request that some
specific data in the screen buffer be read into a variable. This panel is
accessed using the PF key designated as the OSPI hot key (default is PF11).

When the OSPI Transmission Keystroke panel is displayed, enter 31 (the
Read Variable option) in the Select Option field of the panel. Also
type in the name of the variable you want to create in the Variable name
field. This causes data to be read into a variable. The default variable name is
OSIVAR.

You can also specify a SHARED variable name in the SHARED variable
name field which places the data into the SHARED variable using the given
name.

When you press ENTER, the application screen that was displayed when you
pressed the hot key is redisplayed. However, this display is used only to tell
OSPI which data you want to retrieve from the screen. You cannot interact
with the application at this point.

Position the cursor to the beginning of the data you want to read into a
variable and press ENTER. Now position the cursor to the last position of the
data you want to read and press ENTER. This sequence causes OSPI to
generate an IMFEXEC SCAN command for the row, column, and length that
was indicated by the cursor in the previously described sequence; for
example:

IMFEXEC SCAN SESSION(&OSISESS) ROW(18) COL(6) LENGTH(6) +
 VAR(OSIVAR)
BMC Software, Inc., Confidential and Proprietary Information

8-12 MAINVIEW AutoOPERATOR Advanced Automation Guide

OSPI Scripting Application
Of course, OSPI does not know how you want to use this data in your EXEC.
You must edit the EXEC to make proper use of the data. However, it is much
easier to retrieve the data using the read variable option than by
calculating the correct row and column positions manually.

Terminating the Application

VTAM applications have a variety of methods by which you can request
termination. For example, one application may terminate a session when
logoff is received and another application may terminate a session when PF
key 2 is received.

Since the data required to request session termination varies by application,
OSPI does not know when such a request has been sent.

Each time the Scripting application sends data to a VTAM application, it also
attempts to receive data. This read attempt usually fails after a request to
terminate is sent. This failure causes OSPI to display an error panel. An
example of this error panel is shown in Figure 8-3.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 8 Interacting with VTAM Applications with OSPI 8-13

Customizing OSPI EXECs
Figure 8-3 Example of Error Panel

The unsuccessful read looks like a true error to OSPI because it does not
know that the last data sent requested application termination. If you receive
this panel after you requested application termination, no true error occurred
and you can ignore the error panel.

Note: You can also terminate a session using option 30, Cancel session,
from the hot key pad. However, this is not recommended because the
appropriate application clean-up may not be performed.

Customizing OSPI EXECs

The first step in automating a function using OSPI is to use the Scripting
application to record the appropriate interactions with a VTAM application in
an EXEC. The generated EXEC will contain only OSPI IMFEXEC
commands. It will not contain any conditional logic or other commands.

Depending upon the function being implemented, you might need to further
customize the generated EXEC by combining the appropriate logic and
commands with the OSPI IMFEXEC commands. This section provides
customization information in the following areas:

• “OSPI Control Variables” on page 8-15

• “Disconnect/Reconnect Feature” on page 8-16

• “Establishing Multiple Sessions” on page 8-17

BMC Software ----------------- OSPI Session Termination -------- AutoOPERATOR
COMMAND ===>

 The OSPI session has terminated.

 Outstanding function was: RECEIVE DATA

 VTAM ACB error flag: 00

 Diagnostic information:

 RPL RTN/FDBK=0C0B, SENSE=00000000
 REQ CANCELLED DUE TO SESSION
 THE SESSION HAS BEEN TERMINATED

 Note: The above information may indicate that the session was terminated
 normally or abnormally.

 Press ENTER to display last buffer image, PF3 to save script and return.
 Enter CANCEL to skip script saving.
BMC Software, Inc., Confidential and Proprietary Information

8-14 MAINVIEW AutoOPERATOR Advanced Automation Guide

Customizing OSPI EXECs
• “Using Passwords in OSPI EXECs” on page 8-17

The following REXX code is an example where an OSPI EXEC logs onto
TSO; accesses SDSF and the log; exits SDSF and the log; and then logs off
of TSO:

/* THIS REXX EXEC WAS GENERATED BY OSPI ONLINE */
ADDRESS IMFEXEC
IMFEXEC LOGON "APPLID(BTSOB) LOGMODE(D6327802)"
IMFEXEC VGET OSISESS LOCAL
IMFEXEC TYPE "SESSION("OSISESS") COL(27) ROW(1) TEXT(’baodym5’)"
IMFEXEC TYPE "SESSION("OSISESS") COL(8) ROW(2) "
IMFEXEC TRANSMIT "SESSION("OSISESS") ENTER"
IMFEXEC TYPE "SESSION("OSISESS") COL(20) ROW(8) TEXT(’TEST’)"
IMFEXEC TYPE "SESSION("OSISESS") COL(26) ROW(8) "
IMFEXEC TRANSMIT "SESSION("OSISESS") ENTER"
IMFEXEC TYPE "SESSION("OSISESS") COL(6) ROW(20) "
IMFEXEC TRANSMIT "SESSION("OSISESS") ENTER"
IMFEXEC TYPE "SESSION("OSISESS") COL(14) ROW(4) TEXT(’sdsf’)"
IMFEXEC TYPE "SESSION("OSISESS") COL(18) ROW(4) "
IMFEXEC TRANSMIT "SESSION("OSISESS") ENTER"
IMFEXEC TYPE "SESSION("OSISESS") COL(21) ROW(4) TEXT(’log’)"
IMFEXEC TYPE "SESSION("OSISESS") COL(24) ROW(4) "
IMFEXEC TRANSMIT "SESSION("OSISESS") ENTER"
IMFEXEC TYPE "SESSION("OSISESS") COL(21) ROW(4) "
IMFEXEC TRANSMIT "SESSION("OSISESS") ENTER"
IMFEXEC TYPE "SESSION("OSISESS") COL(21) ROW(4) "
IMFEXEC TRANSMIT "SESSION("OSISESS") PF3 "
IMFEXEC TYPE "SESSION("OSISESS") COL(21) ROW(4) "
IMFEXEC TRANSMIT "SESSION("OSISESS") PF3 "
IMFEXEC TYPE "SESSION("OSISESS") COL(14) ROW(4) TEXT(’x’)"
IMFEXEC TYPE "SESSION("OSISESS") COL(15) ROW(4) "
IMFEXEC TRANSMIT "SESSION("OSISESS") ENTER"
IMFEXEC TYPE "SESSION("OSISESS") COL(26) ROW(5) TEXT(’3’)"
IMFEXEC TYPE "SESSION("OSISESS") COL(26) ROW(11) "

Note: This chapter discusses the OSPI IMFEXEC statements in general
terms. See Chapter 12, “Using the IMFEXEC Statements” for
information about specific parameters, return codes, and so on.

OSPI Control Variables

OSPI maintains a set of control variables that indicate the state of each OSPI
session. These control variables are maintained in the EXEC's local variable
pool. They are updated each time a new buffer image is received from the
application.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 8 Interacting with VTAM Applications with OSPI 8-15

Customizing OSPI EXECs
The variables are:

OSISESS Session identifier. Must be used with the SESSION keyword on all
OSPI IMFEXEC commands (except LOGON) to identify the
session you are addressing.

OSIKSTAT Current keyboard status, either LOCKED or UNLOCKED.

OSIAPPL Name of the VTAM application associated with the OSPI session.

OSIROW Current cursor position, 1 to 43.

OSICOL Current cursor position, 1 to 80.

OSILNCNT Number of rows for the terminal type being emulated, 24 to 43.

OSILNnn Each OSILNnn represents one line of the current virtual screen
buffer image. For example, OSILN2 contains line 2 of the current
screen buffer image.

Before an EXEC can use one of the variables, it must be retrieved with an
IMFEXEC VGET command; for example, IMFEXEC VGET OSISESS
LOCAL.

Disconnect/Reconnect Feature

When an EXEC terminates, any OSPI sessions that have been established are
either terminated or disconnected.

The IMFEXEC LOGOFF command without the DISCONNECT parameter
results in a termination request being sent to the VTAM application. When
the DISCONNECT parameter is specified, the VTAM session is not
terminated and another EXEC may resume the session (RECONNECT) by
issuing an IMFEXEC LOGON command with the SESSION parameter. The
application will not be aware of any DISCONNECT/RECONNECT activity.

When an EXEC tries to reconnect a session, it is important that you check the
condition code (IMFCC) after the IMFEXEC LOGON command. Reconnect
sometimes fails due to applications terminating OSPI sessions when no
activity occurs within a specified time. If IMFCC indicates that a reconnect is
not successful, you must reestablish a new session.

To make use of the DISCONNECT/RECONNECT feature, the EXEC that
initially establishes the session must store the session identifier (contained in
the OSISESS variable) in a shared variable. This variable can then be
retrieved by subsequent EXECs to reconnect. A unique shared variable name
must be used for each different session that is concurrently maintained.
BMC Software, Inc., Confidential and Proprietary Information

8-16 MAINVIEW AutoOPERATOR Advanced Automation Guide

OSPI Debugging Facilities
If an EXEC does not issue an IMFEXEC LOGOFF command, all sessions
are automatically terminated. The result is the same as if explicit IMFEXEC
LOGOFF commands had been issued for each session.

Establishing Multiple Sessions

An EXEC can establish sessions with multiple VTAM applications
concurrently; however, a different OSPI control variable prefix must be used
for each session. If different prefixes are not used for each session, the
information for one session overlays the information for another session.

The default prefix for the OSPI control variables is OSI. The PREFIX
keyword on the IMFEXEC LOGON command allows any three character
prefix to be used for the variables.

Using Passwords in OSPI EXECs

Many of the applications that OSPI EXECs will access require passwords for
logon. If the Scripting application is used to create the EXEC, the password
is stored in the EXEC. For security reasons, BMC Software recommends that
you edit the EXEC to replace the password literal with a variable.

One approach for handling this situation is to schedule an EXEC at
AutoOPERATOR startup which requests the operator to enter the password.
The password can then be stored in a global variable that can be retrieved by
any OSPI EXEC needing access to the application.

OSPI Debugging Facilities

OSPI provides several facilities to aid in debugging EXECs and scripts.

Return Codes

Each of the IMFEXEC commands that interface with OSPI provides return
code information in the IMFCC variable. Examining the value of IMFCC
after issuing the IMFEXEC command can be useful during script
development. During this phase, it may even be beneficial for you to record
the IMFCC value in the BBI-SS PAS Journal log using the IMFEXEC MSG
command.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 8 Interacting with VTAM Applications with OSPI 8-17

OSPI Debugging Facilities
After an EXEC has been fully debugged, IMFCC checks or messages that
were added solely for debugging purposes should be removed. However, the
IMFCC check for certain IMFEXEC commands should be retained even after
development has been completed. For example, IMFCC after an IMFEXEC
LOGON that specifies the SESSION parameter (reconnect) should always be
retained.

Error Messages

Certain error conditions cause OSPI to generate error messages in the BBI-
SS PAS Journal log. For example, error message OS5001E is produced if an
attempt is made to enter data in a protected field. When a script is not
functioning properly, it is always advisable for you to examine the BBI-SS
PAS Journal log for error messages. If an error message is produced,
additional information about the error can be found using the BBI Message
application.

OSPI Control Variables

OSPI maintains a set of variables for each active or disconnected session.
You may benefit from examining the value of one or more of these variables
during EXEC development. See “OSPI Control Variables” on page 8-15 for
more information about the control variables.

OSPISNAP

The OSPISNAP DD can be used to gather additional debugging information
for OSPI EXECs and for the Scripting application. You must add the DD
card to the BBI-SS PAS JCL and restart the BBI-SS PAS before directing any
debugging information to it. The DCB characteristics for the OSPISNAP DD
statement are: RECFM=VBA, LRECL=125, BLKSIZE=1632. The blocksize
can be modified to fit your DASD requirements.

OSPISNAP may be routed to a SYSOUT class or to a data set. Two kinds of
output can be directed to the OSPISNAP: session information and debugging
information requested by BMC Software.

Session information is requested using the IMFEXEC SESSINF command.
This command causes the following information to be recorded in the
OSPISNAP data set:

• OSPI ACB associated with the current session
BMC Software, Inc., Confidential and Proprietary Information

8-18 MAINVIEW AutoOPERATOR Advanced Automation Guide

OSPI Debugging Facilities
• Application that OSPI is in session with

• Keyboard status

• Cursor position

• Contents of screen buffer

Since the screen is not visible to a human developing an OSPI EXEC, you
may find it helpful to use the IMFEXEC SESSINF command during the
debugging phase.

If BMC Software support personnel request debugging information, you can
obtain it by specifying the DEBUG keyword on the IMFEXEC LOGON
command or on the Scripting panel. When you use the DEBUG keyword, the
information is also written to the OSPISNAP data set when the EXEC is
invoked. When DEBUG is turned on, additional messages are also written to
the BBI-SS PAS Journal log.

Note: If you specify Y for the DEBUG option on the Scripting panel,
debugging information is written to the OSPISNAP data set only
during script development and not written to the OSPISNAP data set
during EXEC execution.

OSPI Session Termination Panel

When a session between OSPI and a VTAM application is terminated, the
OSPI Session Termination panel is displayed. This panel contains VTAM
diagnostic information.

The following table contains error codes for some of the common reasons
OSPI sessions are terminated.

 ACB
Error
Flag

RPL Return and
Feedback codes Sense Cause of Error

5A N/A N/A OSPI terminal ACB cannot be opened

N/A 1012 087D0001 Application to log on to cannot be located

N/A 144B 00000000 OSPI terminal logmode cannot be located

N/A 0C0B 00000000 Application terminated the session

N/A 0006 00000000 Application terminated the session
BMC Software, Inc., Confidential and Proprietary Information

Chapter 8 Interacting with VTAM Applications with OSPI 8-19

OSPI Debugging Facilities
When the diagnostic information indicates that the application has terminated
the session, an error may not have actually occurred. See “Terminating the
Application” on page 8-13 for more information about application
termination and the OSPI Session Termination panel.

See “OSPI Script Development Panel” on page 8-6 for more information
about specifying ACB, application, and logmode names.
BMC Software, Inc., Confidential and Proprietary Information

8-20 MAINVIEW AutoOPERATOR Advanced Automation Guide

70
Chapter 9 Performing Automation
Using AOAnywhere

This chapter describes the AOAnywhere API and the syntax required to use
it.

AOAnywhere is an application programming interface (API) that allows
MAINVIEW AutoOPERATOR users to perform a variety of automation
functions from outside the BBI-SS PAS address space. You can invoke
AOAnywhere functions from

• The TSO/E command line

• Inside a REXX EXEC or TSO/E CLIST EXEC

You can invoke these functions to operate locally on a BBI-SS PAS running
on the same system that the command is invoked from, or route functions to a
remote system.

Overview

AOAnywhere allows AutoOPERATOR IMFEXEC automation functions to
be invoked from address spaces outside of AutoOPERATOR using a new
command: AOEXEC. The equivalent of the following IMFEXEC commands
are available as AOEXEC commands:

• AOEXEC ALERT, page 14

• AOEXEC MSG, page 40

• AOEXEC NOTIFY, page 42
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-1

Why Use AOAnywhere
• AOEXEC SELECT, page 44

• AOEXEC SYSINFO, page 47

• AOEXEC VDEL, page 51

• AOEXEC VGET, page 54

• AOEXEC VLST, page 56

• AOEXEC VPUT, page 59

• AOEXEC VDELL, page 62

• AOEXEC VGETL, page 64

• AOEXEC VLSTL, page 66

• AOEXEC VPUTL, page 69

Sysplex Support

AOAnywhere functions can be invoked either locally (meaning on a BBI-SS
PAS running on the same system that the command is invoked on) or
remotely to a BBI-SS PAS.

To invoke a command on a remote system:

• A BBI-SS PAS must be active and available on the local system.

• XCF connectivity must exist between the local and the remote BBI-SS
PAS.

Why Use AOAnywhere

AOAnywhere is a powerful function that allows access to many automation
functions previously available only by using AutoOPERATOR IMFEXEC
commands (in REXX EXECs or CLIST EXECs) within the AutoOPERATOR
subsystem. AOAnywhere allows such access through an interface that
operates outside of the subsystem. You can perform tasks that are part of
production control or perform tasks that are part of a helpdesk system such as
set and read variables or create or delete AutoOPERATOR ALERTS from
REXX EXECs without going through the subsystem.
BMC Software, Inc., Confidential and Proprietary Information

9-2 MAINVIEW AutoOPERATOR Advanced Automation Guide

Installation Requirements
In earlier releases of AutoOPERATOR (before version 6.1.00), you could use
the IMFSUBEX interface to invoke EXECs, but this method was slow and
did not allow for two-way exchange of information. Only a return code
issued by the invoked EXEC could be returned.

AOAnywhere functions are very fast; they allow sharing variable pools with
invoked EXECs and access to a host of other functions. In most instances
AOAnywhere offers a faster IMFSUBEX replacement while providing
additional functionality.

Manual process intervention is also simpler. For example, when a helpdesk
operator becomes aware of a network problem before automation does, the
operator can generate an AutoOPERATOR ALERT and (with the
MAINVIEW AutoOPERATOR Elan Workstation component installed) page
additional personnel through an ISPF application. Logging on to the
subsystem is not required and the operation itself can be executed in a few
minutes.

Specific messages can be sent to the BBI Journal from any TSO/E REXX or
CLIST application where specific information about an automation situation
or multi-system support can be provided via XCF connectivity.

AOAnywhere opens up automation possibilities through a simple command
processor that can be invoked in a variety of environments.

Installation Requirements

To use the AOEXEC command processor under TSO/E, it must be available
to the TSO/E user under the STEPLIB/LINKLIB concatenation. Otherwise
the command processor will not be found.

Currently, you can secure access to AOAnywhere with the same security
measures available for writing AutoOPERATOR EXECs. These security
measures are described in the BMC Software document Implementing
Security for MAINVIEW Products.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-3

API Implementation under REXX and CLIST
API Implementation under REXX and CLIST

The API functions are available as a separate command processor. This
feature allows simultaneous use for the API by TSO/REXX and TSO/CLIST.

Differences between IMFEXEC and AOEXEC Parameter Syntax

Parameters and return codes between IMFEXEC and AOEXEC commands
are identical with the following exceptions:

• When AOEXEC is used as a command processor in an EXEC scheduled
within AutoOPERATOR, the return code of the AOEXEC command is
returned in IMFRC as it is for any other command processor that is run
within an AutoOPERATOR EXEC.

• All AOEXEC variable operations (VPUT, VGET, VDEL and their long
counterparts) specify the variable names using the VAR() keyword
instead of a positional parameter.

• The AOEXEC VPUT command has no FROM(), USING() or
ENCRYPT() parameters.

• The AOEXEC VGET command has no INTO(), DECRYPT or DELIM()
parameters.

• All AOEXEC commands might return a return code of –1 with the
TGTSS() keyword. In this case, either the request timed out or the target
system was shut down in the middle of a request.

• All AOEXEC commands accommodate two extra keywords, SS | SSID()
and TGTSS() where

Figure 9-1 AOEXEC Keywords: SS and TGTSS

SS | SSID(subsystem identifier) Required keyword.
SS | SSID() specifies the subsystem identifier of a local
subsystem. If the TGTSS() keyword is not specified, this SSID is
the subsystem where the requested function is executed.

TGTSS(target system identifier) Optional keyword.
If the TGTSS() keyword is specified, the subsystem specified by the
SS | SSID() keyword is considered a router and the actual function
is executed on the subsystem specified by TGTSS().
It must be in the same sysplex as the BBI-SS specified with the
SSID() keyword, and both systems must have the same
XCFGROUP specified in the BBPARM BBISSPxx.
BMC Software, Inc., Confidential and Proprietary Information

9-4 MAINVIEW AutoOPERATOR Advanced Automation Guide

API Implementation under REXX and CLIST
Additional Differences

All AOEXEC commands return values in return codes that are listed with
each AOEXEC command. The values are returned differently depending on
where the AOEXEC command is issued from. For example, if the AOEXEC
command is used in a REXX EXEC, the return code will be returned in the
RC variable. If the AOEXEC command is used in a CLIST EXEC, the return
code is returned in &LASTCC.

Furthermore, the AOEXEC command processor attempts to streamline the
syntax of some of the supported commands. For example:

• For the AOEXEC ALERT command, the first two positional parameters
are replaced by the keywords TEXT() and KEY() respectively.

• The TARGET() keyword has been removed from all AOEXEC
commands and replaced by the TGTSS() keyword.

• The VAR() keyword can be overwritten in the invoked EXEC by
specifying the IMFEXEC SHARE command.

• The AOEXEC SELECT command has a new keyword, VAR(). This
keyword specifies the names of any number of variables that will be
exchanged with the LOCAL variable pool of the selected EXEC.

Before the target EXEC begins, the contents of these variables are placed
as variables of the same name into the LOCAL pool.

When the EXEC ends, the contents of these variables in the target
EXEC’s LOCAL pool are extracted again and placed as TSO variables in
the pool of the invoking EXEC.

Each of these exceptions has been reflected in the documentation for each of
the AOEXEC commands.

Example

Here is an example about how to share variables between an EXEC running
in a TSO/E address space and an EXEC running in the subsystem:

REXX EXEC example:

a=’ONE’
"AOEXEC SELECT EXEC(DEMO) VAR(A B) WAIT(YES) SSID(TGTA)"
say b
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-5

API Implementation under REXX and CLIST
CLIST EXEC example:

SET A=ONE
AOEXEC SELECT EXEC(DEMO) VAR(A B) WAIT(YES) SSID(TGTA)
WRITE &B

These lines within a REXX or CLIST EXEC causes the EXEC named
DEMO to be invoked on the subsystem named TGTA. Before the EXEC
begins processing the contents of the variables of the invoking EXEC,
variables A and B are placed in the EXEC’s LOCAL variable pool. Variable
B’s value has not been set but specified for data exchange with the PAS
EXEC.

The code for the EXEC in the subsystem is

REXX EXEC example:

"IMFEXEC VGET A LOCAL"
"IMFEXEC MSG A"
b=’TWO’
"IMFEXEC VPUT B LOCAL"

CLIST EXEC example:

IMFEXEC VGET A LOCAL
IMFEXEC MSG A
SET B=TWO
IMFEXEC VPUT B LOCAL

This code causes the message ONE to be written to the subsystem journal.
Subsequently the value of TWO is placed into the variable B and this variable
placed into the EXEC’s LOCAL variable pool. This variable pool will be
transmitted back to the invoking REXX EXEC. Note that the specified
contents of the LOCAL variable pool, in this case the variables A and B, are
shared with the invoking EXEC.
BMC Software, Inc., Confidential and Proprietary Information

9-6 MAINVIEW AutoOPERATOR Advanced Automation Guide

API Implementation under REXX and CLIST
The statement

REXX EXEC example:

say b

CLIST EXEC example:

WRITE &B

causes the value of B, in this case now TWO, to be written to the TSO/E
console.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-7

Implementing the AOAnywhere Batch Interface: AOSUBX
Implementing the AOAnywhere Batch Interface:
AOSUBX

For batch jobs, AOAnywhere contains a facility called AOSUBX. This
facility is a partial replacement for the existing IMFSUBEX function. Both
functions allow you to invoke an EXEC from a batch step with the PARM=
specification.

Both facilities allow for requests to be scheduled across systems. However,
AOSUBX (unlike IMFSUBEX), requires sysplex connectivity between the
systems.

In addition, AOSUBX offers significantly shorter execution time and the
ability to wait for EXECs scheduled across systems without tying up the
VTAM link between multiple BBI-SS PASs. When sysplex connectivity
exists, (as it should when using AOSUBX), you should always choose
AOSUBX for EXEC invocation.

In a TSO/E environment, a suite of command processor functions is available
under the AOEXEC facility. Refer to “AOEXEC Commands” on page 9-11
for details. This approach is preferred under TSO/E as opposed to using the
AOSUBX facility.

Why Use AOSUBX

Under certain conditions, it is convenient to initiate an EXEC from a jobstep
or procstep. This invocation can signal the completion of a particular function
or the necessity to execute AutoOPERATOR functions on behalf of the step.
At times, these functions need to be executed before the job or process can
continue and some sort of completion indication needs to be passed back and
forth between the invoked EXEC and the step.

AOSUBX (like IMFSUBEX) meets these requirements. It represents a high
speed path to EXEC invocation on either local or remote systems and allows
the caller to wait for the completion of this EXEC, returning the exit code of
the invoked EXEC as a modified return code.

Syntax

The general syntax for invoking AOSUBX from a jobstep is as follows:

//STEPX EXEC PGM=AOSUBX,PARM=’parms…’
//STEPLIB DD DISP=SHR,DSN=prefix..BBLINK
BMC Software, Inc., Confidential and Proprietary Information

9-8 MAINVIEW AutoOPERATOR Advanced Automation Guide

Implementing the AOAnywhere Batch Interface: AOSUBX
The parms entered must specify the EXEC() and SS | SSID() keywords
whereas the TGTSS() and WAIT() keywords are optional. The description of
the keywords follows.

Return codes are listed in the following table.

Keyword
Required/
Optional Description

EXEC Required Specifies the name of the EXEC and any parameters to be passed to
the symbolic variables defined as input in the EXEC.
Maximum length is any number of characters allowed by the PARM=
statement.
Note that the SS | SSID() parameter is required.

SS | SSID() Required Specifies the SSID of the BBI-SS PAS to process this EXEC or the
SSID of a local BBI-SS PAS that will route the request to a remote BBI-
SS PAS (as specified by the SSID specified in the TARGET|TGTSS()
keyword).

TARGET|TGTSS() Optional Specifies the SSID of a remote BBI-SS PAS to which the request is to
be routed. SYSPLEX connectivity between the local and remote BBI-
SS PAS must be available.
The BBI-SS PAS must be in the same sysplex as the BBI-SS specified
with the SSID() keyword, and both systems must have the same
XCFGROUP specified in the BBPARM BBISSPxx.

WAIT() Optional Specifies whether to wait for the completion of the EXEC or continue
after scheduling. Note that WAIT(Y) is required to obtain the exit code
of the EXEC.

Table 9-1 Return Codes

Value Description

-1 When the TGTSS() keyword is used, indicates that either the request timed out or the
target system was shut down in the middle of a request.

0 Command was executed successfully.

8 EXEC you are trying to invoke does not exist.

16 Syntax error occurred.

32 No XCF connection exists between the subsystem specified with the SS | SSID()
keyword and the subsystem specified using the TGTSS() keyword. The target subsystem
is most likely not active or not in the same sysplex as originating subsystem.

36 The local BBI-SS PAS specified by the SSID parameter is not available.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible AOAnywhere versions exist.

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-9

Implementing the AOAnywhere Batch Interface: AOSUBX
Examples

EXEC(TEST A B C D()) SSID(RE61) TGTSS(RE62) WAIT(Y)

An EXEC with the name of TEST will be invoked, passing the parameters A
B C D(). Note that parentheses are allowed. A BBI-SS PAS with the SSID
of RE61 must be active on the same MVS image that will route the request to
another BBI-SS PAS with an SSID of RE62.

The step will wait until the EXEC ends and a return code of 2048 plus the
exit code of the EXEC is returned. For example, if the EXEC ended with an
IMFEXEC EXIT CODE(12), the step receives a return code of 2060
(2048+12).

56 The BBI-SS PAS is not an AutoOPERATOR. If this BBI-PAS is meant to be an
AutoOPERATOR, ensure that the BBKEYS member contains valid AutoOPERATOR
keys and product=AAO is specified in BBISSP00.

2048 + return code When specifying WAIT(Y) and the command was executed successfully, a value 2048 is
added to the EXEC’s exit code before the return code is generated.

Table 9-1 Return Codes (continued)

Value Description
BMC Software, Inc., Confidential and Proprietary Information

9-10 MAINVIEW AutoOPERATOR Advanced Automation Guide

AOEXEC Commands
AOEXEC Commands

The following table lists the IMFEXEC AOEXEC commands and the page
where you can find more information.

General Coding Conventions

The following sections briefly describe the coding conventions for using the
AOEXEC command statements.

The command syntax is the keyword AOEXEC, followed by the command
and any necessary parameters; for example:

AOEXEC command [parameters]

Command Page Function

AOEXEC ALERT 9-14 Creates and manages exception messages and message queues that
can be displayed by any of the STATUS applications and ALERT
Management Facility applications.

AOEXEC MSG 9-40 Logs a message in the BBI-SS PAS Journal log.

AOEXEC NOTIFY 9-42 Sends a request through AutoOPERATOR to issue a pager call using
the MAINVIEW AutoOPERATOR Elan Workstation component (if it is
installed).

AOEXEC SELECT 9-44 Invokes an EXEC or a program.

AOEXEC SYSINFO 9-47 Searches the current MVS image for an AutoOPERATOR subsystem
that runs AOAnywhere support.

AOEXEC VDEL 9-51 Deletes one or more variables from one of the AutoOPERATOR
variable pools.

AOEXEC VGET 9-54 Copies one or more variables from one of the AutoOPERATOR pools
into the EXECs function pool.

AOEXEC VLST 9-56 Lists variable names defined in the AutoOPERATOR pools.

AOEXEC VPUT 9-59 Copies one or more variables from the EXECs function pool into one
of the AutoOPERATOR pools.

AOEXEC VDELL 9-62 Deletes one or more long variables from one of the AutoOPERATOR
variable pools.

AOEXEC VGETL 9-64 Copies one or more long variables from one of the AutoOPERATOR
pools into the TSO pool.

AOEXEC VLSTL 9-66 Retrieves a long variable from the specified pool and places it into the
TSO pool.

AOEXEC VPUTL 9-69 Creates or sets a long variable from a variable in the TSO pool.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-11

AOEXEC Commands
Using Variable Names

Variable names are limited to 32 characters in length except where noted. The
first character of the variable must be alphanumeric or one of the following
special characters:

• $

• @

• #

Reading Return Codes

All AOEXEC commands return values in return codes that are listed with
each AOEXEC command. The values are returned differently depending on
where the AOEXEC command is issued from. For example, if the AOEXEC
command is used in a REXX EXEC, the return code will be returned in the
RC variable. If the AOEXEC command is used in a CLIST EXEC, the return
code is returned in &LASTCC.
BMC Software, Inc., Confidential and Proprietary Information

9-12 MAINVIEW AutoOPERATOR Advanced Automation Guide

AOEXEC Commands
Understanding Command Statement Syntax

Each AOEXEC command statement description includes a table describing
the parameters for the command. The table uses the following format:

The numbers in this table correspond to the following descriptions:

1 A short parameter identifier. If the parameter has uppercase letters, this
identifier must be coded exactly as shown.

If parts of the identifier are shown in bold, this parameter can be
abbreviated, using the bold letters.

Positional parameters are not associated with a specific identifier. In
these cases, this column contains an alias that describes the parameter.

2 The function of the parameter.

3 Notes about the parameter. Typically, these notes describe any length, value,
range, or string limitations.

Note: When you invoke a CLIST EXEC that has at least one keyword on
the PROC statement, you must invoke the EXEC using at least one
keyword.

Parameter Function Notes

1 2 3
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-13

AOEXEC ALERT
AOEXEC ALERT

This command manages exception messages and message queues that can be
displayed by any of the STATUS applications and ALERT Management
Facility applications.

The following table describes the parameters.

Command Parameters

AOEXEC ALERT [KEY()]
[TEXT(’text string’)]
[ALARM(YES|NO)]
[COLOR(RED|PINK|YELLOW|DKBLUE|LTBLUE|GREEN|WHITE)]
[DISPOSE(KEEP|DELETE)]
[ESCALATE(UP|DOWN)]
[ESCEXEC(’execname p1 p2 p3 ... pn’)]
[EXEC(’execname p1 p2 p3 ... pn’)]
[FUNCTION(ADD|COUNT|CREATEQ|DELETE|DELETEQ|LISTQ|READQ)]
[HELP(panelname)]
[INTERVAL(nnnn,nnnn,nnnn,nnnn,nnnn,nnnn)]
[PCMD(’cmd string’)]
[POSITION(position)]
[PRI(CRITICAL|MAJOR|MINOR|WARNING|INFORMATIONAL|CLEARING)]
[PUBLISH(REPLACE|ADD|NO]
[QUEUE(MAIN|queue name)]
[RETAIN(YES|NO)]
SS | SSID(subsystem identifier)
[SYSTEM(YES|NO)]
[TGTSS(target subsystem identifier)]
[ORIGIN(origin)]
[UDATA(’user data’)]
[USER(user name)]

Table 9-2 AOEXEC ALERT Parameters Description (Part 1 of 6)

Parameter Function Notes

KEY The key used to uniquely identify an
ALERT within a queue

Maximum length is 64 alphanumeric
positions. Required for

FUNCTION(ADD)
FUNCTION(DELETE)

Optional for

FUNCTION(READQ)
You must specify a unique key for every
ALERT you create. If you create a second
ALERT with the same key as an already
existing ALERT in the queue, the second
ALERT will overwrite the first ALERT.
BMC Software, Inc., Confidential and Proprietary Information

9-14 MAINVIEW AutoOPERATOR Advanced Automation Guide

AOEXEC ALERT
TEXT The text of the ALERT message Maximum message length is 255
alphanumeric positions. Required for

FUNCTION(ADD)
If the contents of the text are null but
specified (for example, zero length), the
ALERT text is replaced by N/A. A
specification of /N within the alert text
forces a line break. You must include a
blank space before and after using /N.
This parameter applies also to the READQ
and COUNT functions. Only ALERTs
matching this text string are considered
during these operations.

ALARM An audible alarm emitted from the terminal
on the ALERT Detail application

Possible values are
YESSound alarm.
NODo not sound alarm.

NO is the default.

COLOR|COL The color in which the ALERT is displayed
in the ALERT DETAIL and STATUS
applications (overrides default color
associated with ALERT priority)

This parameter does not have any impact
upon the ALERT OVERVIEW application.
When an ALERT’s priority is increased or
decreased (with the ESCALATE
parameter), the new ALERT priority’s color
will always default to the following list of
colors:

RED - CRITICAL

PINK - MAJOR

YELLOW - MINOR

DKBLUE - WARNING

LYBLUE - INFORMATIONAL

GREEN - CLEARING

DISPOSE Allows you to specify whether an ALERT is
kept or deleted when it has reached its
final escalation priority level

This keyword must be used with the
INTERVAL keyword.
Possible values are
KEEPKeep the ALERT in its queue.
DELETEDelete the ALERT from the
queue.

KEEP is the default.
The variable AMFEDISP returns the value
of this keyword.

Table 9-2 AOEXEC ALERT Parameters Description (Part 2 of 6)

Parameter Function Notes
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-15

AOEXEC ALERT
ESCALATE Allows you to create ALERTs that can
change in priority over a specified interval
of time

This keyword must be used with the
INTERVAL keyword.
Possible values are
UPThe ALERT priority is upgraded from
less critical to more critical.
DOWNThe ALERT priority is downgraded
from more critical to less critical.

UP is the default.
The variable AMFEDIR returns the value
of this keyword.

ESCEXEC Allows you to specify an EXEC (with
parameters) that is scheduled when the
ALERT reaches its final priority level

This keyword must be used with the
INTERVAL keyword.
The variable AMFEEXEC returns the value
of this keyword.

EXEC The name of the ALERT-initiated follow-up
EXEC and its parameters

Maximum length is 256 characters.
Refer to “Parameters Passed to the EXEC”
on page 3-7 for more information about
parameters passed to ALERT-initiated
EXECs.

FUNCTION|FUN The function to be performed Use the FUNCTION keyword with
• ADD
• COUNT
• CREATEQ
• DELETE
• DELETEQ
• LISTQ
• READQ
For more information about these functions
and the return codes they generate, refer
to Table 9-3“FUNCTION Names and
IMFCC Return Codes” on page 9-20.

HELP The name of an extended help pane Maximum length is 8 characters.
This help panel is displayed when you
enter the EXPAND primary command in
the ALERT DETAIL application while the
cursor is positioned on the ALERT. The
help panel is a text member without any
formatting or control characters.
The help text member must be included
the BBPLIB concatenation for the terminal
session.

Table 9-2 AOEXEC ALERT Parameters Description (Part 3 of 6)

Parameter Function Notes
BMC Software, Inc., Confidential and Proprietary Information

9-16 MAINVIEW AutoOPERATOR Advanced Automation Guide

AOEXEC ALERT
INTERVAL Allows you to specify one to six intervals of
time over which the priority of an ALERT
will change
An ALERT’s priority can either increase
(become more critical) or decrease
(become less critical) in priority over the
specified time intervals.
The interval can be specified from 0 to
9999 minutes. At least one interval must
be specified for an ALERT when
ESCALATE is specified.
When the final interval expires
• The action specified by the DISPOSE

keyword occurs (either the ALERT is
deleted or kept)

• If an EXEC is specified with the
ESCEXEC keyword, the EXEC is
scheduled

This keyword must be used with the
ESCALATE keyword and you must specify
at least one interval for an ALERT when
ESCALATE is specified. The variables
AMFEINT1 through AMFEINT6 return the
values associated with this keyword.
In addition, when you want to have an
ALERT change in priority, you must always
code one interval more than the number of
changes. No priority changes occur in the
last interval.
For example, if you want an ALERT to
change from MAJOR to CRITICAL, you
must code two interval periods.
Refer to “Examples of ALERT Escalation”
on page 9-32 for examples.

ORIGIN A new origin to assign to this ALERT A 1- to 8-character user-defined origin that
is assigned to the ALERT.
The first character cannot be a numeric.
This user-defined origin overrides the
EXEC’s IMFSYSID (or the originating job
name for the EXEC).

PCMD A command to be executed if the terminal
operator uses the TRANSFER command
on the ALERT DETAIL panel

Any command that is valid from the
COMMAND line is a valid value for this
parameter.
Maximum length is 256 characters.
PCMD is executed as if it were entered on
the COMMAND line. You should use the
SYSTEM parameter (described below) or
include the BBI SYSTEM command for
ALERTs that contain PCMD to ensure that
the target field of the transferred-to
application will be correct. If you use the
SYSTEM parameter, the SYSTEM
command is executed after all other
commands specified with PCMD have
executed.
For example:
PCMD(’CICS;EX TRAN;SYSTEM
SYSA’)
Note that if you have blanks in the PCMD
statement, you must use single quotation
marks.

POSITION|POS The order of the ALERT in the queue to
read

Valid values are in the range from 1 to
32,767.
This parameter is used only with the
READQ function.

Table 9-2 AOEXEC ALERT Parameters Description (Part 4 of 6)

Parameter Function Notes
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-17

AOEXEC ALERT
PRIORITY The priority of the ALERT A valid value is one of the following
options:

CRITICAL
MAJOR
MINOR
WARNING
INFORMATIONAL
CLEARING

PUBLISH Specifies whether an ALERT is published
and how it is published to connected
PATROL Enterprise Manager (PATROL
EM) workstations that have subscribed to
receive ALERTs through the General
Message Exchange (GME).

Possible values are
REPLACEAn ALERT REPLACE command
for the ALERT’s key/queue is sent to all
PATROL EM workstations that have
subscribed to receive ALERTs from this
AutoOPERATOR. If there is already an
ALERT with that key/queue on a PATROL
EM workstation, it is deleted before writing
the new ALERT with that key/queue.
ADDAn ALERT ADD command is sent to
all workstations that have subscribed to
receive ALERTs from this
AutoOPERATOR. If there is already an
ALERT with that key/queue on a PATROL
EM workstation, it is not deleted before
writing the new ALERT with that
key/queue.
ADD is the default.
NOThe ALERT is not written to the
connected PATROL EM workstations even
if they have subscribed to receive ALERTs.

QUEUE|QUE The name of the queue to access or into
which to place the ALERT

Length can be 1 - 8 characters; embedded
blanks are valid.

RETAIN Allows you to specify that an ALERT will
be retained across BBI-SS PAS restarts
(both cold and warm restarts) and MVS
IPLs.
Note that using this parameter causes the
ALERT to be written to DASD. Therefore,
you should use this parameter only after
careful consideration. A BBI-SS PAS
(warm or cold) start or MVS IPL might
eliminate the exceptional situation that
caused the ALERT in the first place.

Possible values are
YESRetain this ALERT in disk space so
that it can survive a BBI-SS PAS warm or
cold start.
NODo not retain this ALERT to survive
BBI-SS PAS warm or cold starts.

NO is the default.
ALERTs that specify RETAIN(YES) cannot
also specify the INTERVAL keyword.
In other words, ALERTs that are to be
retained across BBI-SS PAS restarts or
MVS IPLs cannot change priority (either
increase or decrease).

SS | SSID SS | SSID() specifies the subsystem
identifier of a local subsystem. If TGTSS()
is not specified, this is the subsystem
where the requested function is executed.

Required keyword.

Table 9-2 AOEXEC ALERT Parameters Description (Part 5 of 6)

Parameter Function Notes
BMC Software, Inc., Confidential and Proprietary Information

9-18 MAINVIEW AutoOPERATOR Advanced Automation Guide

AOEXEC ALERT
SYSTEM Determines whether the ALERT DETAIL
processor switches the current target to
the origin of the ALERT when processing a
TRANSFER (PCMD)

The default is YES, switch the current
target to the origin of the ALERT when
processing a TRANSFER (PCMD).
NO specifies do not switch current target
to the origin of the ALERT when
processing a TRANSFER (PCMD).
The target is changed to reflect what was
coded in the ORIGIN parameter or the
AutoOPERATOR SSID.

TGTSS If the TGTSS() keyword is specified, the
subsystem specified by the SS | SSID()
keyword is considered a router and the
actual function is executed on the
subsystem specified by TGTSS(). If
TGTSS() is not specified, the requested
function is executed on the subsystem
specified by the SS | SSID keyword.

Optional keyword.
It must be in the same sysplex as the BBI-
SS specified with the SSID() keyword, and
both systems must have the same
XCFGROUP specified in the BBPARM
BBISSPxx.
The recommendation is to omit the
XCFGROUP parameter so that all
AutoOPERATOR BBI-PASes will be able to
communicate with each other using the
default AOAnywhere XCF group.

UDATA Any desired user data string Maximum length is 256 bytes
The contents of the UDATA field can be
retrieved using the READQ function.

USER The name of the user ID to which the
ALERT is addressed

A 1 - 8 character valid BBI-TS user ID.
Contents of the user field can be used to
tailor ALERT DETAIL displays using the
ALERT DETAIL PROFILE panel. Refer to
the “ALERT Management Facility” chapter
in the MAINVIEW AutoOPERATOR Basic
Automation Guide for more information.

Table 9-2 AOEXEC ALERT Parameters Description (Part 6 of 6)

Parameter Function Notes
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-19

AOEXEC ALERT
Return Codes for FUNCTION Keywords

The following table lists and describes in alphabetical order the return codes
for the different functions that can be used with the FUNCTION keyword in
an AOEXEC ALERT EXEC statement.

Table 9-3 FUNCTION Names and IMFCC Return Codes (Part 1 of 7)

FUNCTION Description

IMFCC
Return
Code
Value Return Code Description

ADD Adds an ALERT to a queue and
creates a new queue if one does
not already exist.
Valid operands are
ALARM
COLOR
DISPOSE
ESCALATE
ESCEXEC
EXEC
HELP
INTERVAL
RCMD
POSITION
PRI
PUBLISH
QUEUE
RETAIN
SYSTEM
TERGET
TEXT
ORIGIN
UDATA
USER

-1 When the TGTSS() keyword is used,
specifies that either the request timed out or
the target system was shut down in the
middle of a request.

0 ADD was successful.

16 Invalid syntax was used.

20 ALERT queue is full.

32 No XCF connection exists between the
subsystem that was specified with the SS |
SSID() keyword and the subsystem that was
specified by using the TGTSS() keyword.
The target subsystem is most likely not
active or not in the same sysplex as the
originating subsystem.

36 The subsystem that was specified by using
the SS | SSID() keyword cannot be found on
the local system.

40 Security definitions disallowed access to this
function on the specified subsystem.

48 Incompatible AOAnywhere versions exist.

52 An attempt was made to execute this
function under NetView without a valid
Access/NetView product key.

56 The BBI-SS PAS is not an AutoOPERATOR.
If this BBI-PAS is meant to be an
AutoOPERATOR, ensure that the BBKEYS
member contains valid AutoOPERATOR
keys and product=AAO is specified in
BBISSP00.
BMC Software, Inc., Confidential and Proprietary Information

9-20 MAINVIEW AutoOPERATOR Advanced Automation Guide

AOEXEC ALERT
COUNT Counts the numbers of ALERTs
in a given queue.
Refer to “TSO Variables Returned
from COUNT” on page 9-28 for
more information.
Valid operands are
QUEUE
TARGET

-1 When the TGTSS() keyword is used,
specifies that either the request timed out or
the target system was shut down in the
middle of a request.

0 COUNT was successful; count value is
returned in variable AMFCOUNT.

8 Queue does not exist.

16 Invalid syntax was used.

32 No XCF connection exists between the
subsystem specified with the SS | SSID()
keyword and the subsystem specified using
the TGTSS() keyword. The target subsystem
is most likely not active or not in the same
sysplex as the originating subsystem.

36 The subsystem specified using the SS |
SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this
function on the specified subsystem.

48 Incompatible AOAnywhere versions exist.

52 An attempt was made to execute this
function under NetView without a valid
Access/NetView product key.

56 The BBI-SS PAS is not an AutoOPERATOR.
If this BBI-PAS is meant to be an
AutoOPERATOR, ensure that the BBKEYS
member contains valid AutoOPERATOR
keys and product=AAO is specified in
BBISSP00.

Table 9-3 FUNCTION Names and IMFCC Return Codes (Part 2 of 7)

FUNCTION Description

IMFCC
Return
Code
Value Return Code Description
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-21

AOEXEC ALERT
CREATEQ Creates a new ALERT queue.
Valid operands are
QUEUE
TARGET

-1 When the TGTSS() keyword is used,
specifies that either the request timed out or
the target system was shut down in the
middle of a request.

0 Queue was created successfully.

4 Queue already exists.

16 Invalid syntax was used.

32 No XCF connection exists between the
subsystem specified with the SS | SSID()
keyword and the subsystem specified using
the TGTSS() keyword. The target subsystem
is most likely not active or not in the same
sysplex as the originating subsystem.

36 The subsystem specified using the SS |
SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this
function on the specified subsystem.

48 Incompatible AOAnywhere versions exist.

52 An attempt was made to execute this
function under NetView without a valid
Access/NetView product key.

56 The BBI-SS PAS is not an AutoOPERATOR.
If this BBI-PAS is meant to be an
AutoOPERATOR, ensure that the BBKEYS
member contains valid AutoOPERATOR
keys and product=AAO is specified in
BBISSP00.

Table 9-3 FUNCTION Names and IMFCC Return Codes (Part 3 of 7)

FUNCTION Description

IMFCC
Return
Code
Value Return Code Description
BMC Software, Inc., Confidential and Proprietary Information

9-22 MAINVIEW AutoOPERATOR Advanced Automation Guide

AOEXEC ALERT
DELETE Deletes an ALERT by the ALERT
key.
Valid operands are
QUEUE
TARGET

-1 When the TGTSS() keyword is used,
specifies that either the request timed out or
the target system was shut down in the
middle of a request.

0 DELETE was successful.

4 ALERT does not exist.

8 Queue does not exist.

16 Invalid syntax was used.

32 No XCF connection exists between the
subsystem specified with the SS | SSID()
keyword and the subsystem specified using
the TGTSS() keyword. The target subsystem
is most likely not active or not in the same
sysplex as the originating subsystem.

36 The subsystem specified using the SS |
SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this
function on the specified subsystem.

48 Incompatible AOAnywhere versions exist.

52 An attempt was made to execute this
function under NetView without a valid
Access/NetView product key.

56 The BBI-SS PAS is not an AutoOPERATOR.
If this BBI-PAS is meant to be an
AutoOPERATOR, ensure that the BBKEYS
member contains valid AutoOPERATOR
keys and product=AAO is specified in
BBISSP00.

Table 9-3 FUNCTION Names and IMFCC Return Codes (Part 4 of 7)

FUNCTION Description

IMFCC
Return
Code
Value Return Code Description
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-23

AOEXEC ALERT
DELETEQ Deletes an ALERT queue.
Valid operands are
QUEUE
TARGET

-1 When the TGTSS() keyword is used,
specifies that either the request timed out or
the target system was shut down in the
middle of a request.

0 DELETEQ was successful.

4 Queue does not exist.

16 Invalid syntax was used.

32 No XCF connection exists between the
subsystem specified with the SS | SSID()
keyword and the subsystem specified using
the TGTSS() keyword. The target subsystem
is most likely not active or not in the same
sysplex as the originating subsystem.

36 The subsystem specified using the SS |
SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this
function on the specified subsystem.

48 Incompatible AOAnywhere versions exist.

52 An attempt was made to execute this
function under NetView without a valid
Access/NetView product key.

56 The BBI-SS PAS is not an AutoOPERATOR.
If this BBI-PAS is meant to be an
AutoOPERATOR, ensure that the BBKEYS
member contains valid AutoOPERATOR
keys and product=AAO is specified in
BBISSP00.

Table 9-3 FUNCTION Names and IMFCC Return Codes (Part 5 of 7)

FUNCTION Description

IMFCC
Return
Code
Value Return Code Description
BMC Software, Inc., Confidential and Proprietary Information

9-24 MAINVIEW AutoOPERATOR Advanced Automation Guide

AOEXEC ALERT
LISTQ Lists (in TSO variable IMFNOL)
the number of ALERT queues
present in the target subsystem.
Refer to “TSO Variables Returned
from LISTQ” on page 9-28 for
more information.
Valid operand is
TARGET

-1 When the TGTSS() keyword is used,
specifies that either the request timed out or
the target system was shut down in the
middle of a request.

0 LISTQ was successful; ALERT queue data
is returned.

16 Invalid syntax was used.

32 No XCF connection exists between the
subsystem specified with the SS | SSID()
keyword and the subsystem specified using
the TGTSS() keyword. The target subsystem
is most likely not active or not in the same
sysplex as the originating subsystem.

36 The subsystem specified using the SS |
SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this
function on the specified subsystem.

48 Incompatible AOAnywhere versions exist.

52 An attempt was made to execute this
function under NetView without a valid
Access/NetView product key.

56 The BBI-SS PAS is not an AutoOPERATOR.
If this BBI-PAS is meant to be an
AutoOPERATOR, ensure that the BBKEYS
member contains valid AutoOPERATOR
keys and product=AAO is specified in
BBISSP00.

Table 9-3 FUNCTION Names and IMFCC Return Codes (Part 6 of 7)

FUNCTION Description

IMFCC
Return
Code
Value Return Code Description
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-25

AOEXEC ALERT
READQ Reads an ALERT from the queue
and returns the characteristics of
the ALERT in TSO variables.
Refer to “TSO Variables Returned
from the READQ Parameter” for
more information.
Valid operands are
POSITION
QUEUE
TARGET

-1 When the TGTSS() keyword is used,
specifies that either the request timed out or
the target system was shut down in the
middle of a request.

0 READQ was successful; ALERT data
returned.

4 Either no match was found when using KEY
and TEXT criteria or the search ran past the
end of the queue when using the POSITION
keyword.

8 Queue does not exist.

16 Invalid syntax was used.

32 No XCF connection exists between the
subsystem specified with the SS | SSID()
keyword and the subsystem specified using
the TGTSS() keyword. The target subsystem
is most likely not active or not in the same
sysplex as the originating subsystem.

36 The subsystem specified using the SS |
SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this
function on the specified subsystem.

48 Incompatible AOAnywhere versions exist.

52 An attempt was made to execute this
function under NetView without a valid
Access/NetView product key.

56 The BBI-SS PAS is not an AutoOPERATOR.
If this BBI-PAS is meant to be an
AutoOPERATOR, ensure that the BBKEYS
member contains valid AutoOPERATOR
keys and product=AAO is specified in
BBISSP00.

Table 9-3 FUNCTION Names and IMFCC Return Codes (Part 7 of 7)

FUNCTION Description

IMFCC
Return
Code
Value Return Code Description
BMC Software, Inc., Confidential and Proprietary Information

9-26 MAINVIEW AutoOPERATOR Advanced Automation Guide

AOEXEC ALERT
TSO Variables Returned from the READQ Parameter

The following table lists the TSO variables returned from the READQ
parameter.

Name Contents
Maximum
Length/Format Example

AMFALARM Alarm value of the alert 1 / Y (YES) or N
(NO)

Y

AMFCOLOR Color of ALERT 6 / As specified
by COLOR
parameter

RED

AMFEDIR Increase or decrease the priority
of the ALERT when it is escalated

1 / Character U
(up) or D (down)

D

AMFEDISP Keep or delete the ALERT at the
final escalation level

1 / Character (K
or D)

K

AMFEEXEC Name of EXEC and EXEC
parameters scheduled at final
escalation priority

0-256 / Character ALRTEXEC

AMFEINT1
AMFEINT2
AMFEINT3
AMFEINT4
AMFEINT5
AMFEINT6

Number (in minutes) from 0 to
9999

4 / Numeric (or
null)

15

AMFEXEC EXEC and EXEC parameters
associated with the ALERT

0-256 / Character DBSTART SHIFT2

AMFHELP Extended Alert member name 8 / Character HELPXT2

AMFIDATE Date ALERT was issued 9 / DD-MMM-YY 14-FEB-92

AMFITIME Time ALERT was issued 8 / hh:mm:ss 12:02:24

AMFKEY Key of the ALERT 1-64 / Character DASD01

AMFORGN Origin of ALERT 1-8 / Character CICSPROD

AMFPCMD Primary command specified in
ALERT

0-256 / Character CICS; EX TRAN

AMFPRIOR Priority of ALERT 13 / As specified
in PRIORITY
parameter

INFORMATIONAL

AMFPSYS Value for SYSTEM keyword
(could be either YES or NO)

1 / Character (Y
or null)

Y

AMFPUB Value of the PUBLISH keyword
when an ALERT is created

2-7/ADD,
REPLACE, or
NO

ADD

AMFQUEUE Name of queue for ALERT 8 / Character MAIN

AMFRTAIN Specifies whether to retain an
ALERT across BBI-SS PAS warm
and cold starts

1 / Character (Y
or N)

Y

BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-27

AOEXEC ALERT
TSO Variables Returned from COUNT

The following table lists the TSO variables returned from the COUNT
parameter.

TSO Variables Returned from LISTQ

The following table lists the TSO variables returned from the LISTQ
parameter.

Examples

This section describes examples using the AOEXEC ALERT command. A
brief discussion follows each example.

AMFSSID System from which ALERT was
issued

8 / Character SYSB

AMFTEXT Text of the ALERT 0-255 / Character This ALERT is a test

AMFTGT Target to which ALERT was
issued

1-8 / Character IMS22P

AMFUDATA User data string 0-256 / Character Any value specified in UDATA
parameter

AMFUSER Name of the user ID to which the
ALERT is addressed

8 / Character JDB1

Name Contents

AMFCOUNT Number of ALERTs in designated queue

Name Contents

IMFNOL Number of queues present in the target subsystem. In variables LINE1 through LINExxx, it
returns the names of the all the queues. Limit is 500 queue names.

Name Contents
Maximum
Length/Format Example
BMC Software, Inc., Confidential and Proprietary Information

9-28 MAINVIEW AutoOPERATOR Advanced Automation Guide

AOEXEC ALERT
Example 1: Creating a Multiline ALERT

REXX EXEC example:

"AOEXEC ALERT KEY(NETW2) ",
 "TEXT(’COMMUNICATION LINES DOWN: /N - DALLAS /N - CHICAGO’) ",
 "FUNCTION(ADD) QUEUE(NETWORK) ",
 "PRIORITY(CRITICAL) COLOR(PINK) SSID(RE61)"

CLIST EXEC example:

AOEXEC ALERT KEY(NETW2) +
 TEXT(’COMMUNICATION LINES DOWN: /N - DALLAS /N - CHICAGO’) +
 FUNCTION(ADD) QUEUE(NETWORK) +
 PRIORITY(CRITICAL) COLOR(PINK) SSID(RE61)

ALERTs are created as single-line messages unless you use the characters /N
in the alert text parameter. The characters /N indicate the beginning of a new
line of alert text.

You must use a blank space before and after /N. In the example above, the
alert text parameters includes the use of /N in two places. The EXEC
command in this example produces the following multiline ALERT:

___ 11:43 CHICAGO COMMUNICATION LINES DOWN:
- DALLAS
- CHICAGO

Example 2: Associating a Help Panel with an ALERT

REXX EXEC example:

"AOEXEC ALERT KEY(NETW1) ",
 "TEXT(’ALM0100 - 8100 COMMUNICATION LINE DOWN: /N - CHI998A21’) ",
 "FUNCTION(ADD) QUEUE(NETWORK) PRIORITY(WARNING) HELP(H8100) ",
 "COLOR(RED) SSID(RE61)"
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-29

AOEXEC ALERT
CLIST EXEC example:

AOEXEC ALERT KEY(NETW1) +
 TEXT(’ALM0100 - 8100 COMMUNICATION LINE DOWN: /N - CHI998A21’) +
 FUNCTION(ADD) QUEUE(NETWORK) PRIORITY(WARNING) HELP(H8100) +
 COLOR(RED) SSID(RE61)

Prior to using the HELP keyword in the AOEXEC ALERT command, you
must create and add the help panel to BBPLIB. The HELP keyword specifies
the name of the BBPLIB member name. The example shows an AOEXEC
ALERT command statement that specifies a help panel named H8100.

The ALERT created by the EXEC appears on the ALERT DETAIL panel in
the following format:

TIME IND ORIGIN _______________________________________
11:44 h CHICAGO ALM0100 8100 COMMUNICATION LINE DOWN:
 -CHI998A21

The ALERT is displayed with an h in the IND column. This h indicates that
there is a help panel associated with the ALERT.

To access the help panel, place the cursor anywhere on the ALERT text and
press the PF key assigned to EXPAND. You can also type EXPAND on the
COMMAND line and then place the cursor anywhere on the ALERT text and
press ENTER.
BMC Software, Inc., Confidential and Proprietary Information

9-30 MAINVIEW AutoOPERATOR Advanced Automation Guide

AOEXEC ALERT
Example 3: Managing ALERT Queues

REXX EXEC example:

/* REXX */
"AOEXEC VGET VAR(THRSHOLD) SSID(RE61)"
"AOEXEC ALERT FUNCTION(COUNT) QUEUE(NETWORK) SSID(RE61)"
n=amfcount
do while n > 0
 "AOEXEC ALERT FUNCTION(READQ) QUEUE(NETWORK) POSITION("N") SSID(RE61)"
 if rc=0 then do
 if amfudata > thrshold then do
 "AOEXEC ALERT KEY("amfkey") FUNCTION(DELETE) QUEUE(NETWORK)
SSID(RE61)"
 "AOEXEC ALERT KEY("amfkey") FUNCTION(ADD) TEXT(’"amftext"’)
QUEUE(SUPERVSE)”,
 “SSID(RE61)"
 END
 END
 n = n - 1
END

CLIST EXEC example:

PROC 0
AOEXEC VGET VAR(THRSHOLD) SSID(RE61)
AOEXEC ALERT FUNCTION(COUNT) QUEUE(NETWORK) SSID(RE61)
SET N=&AMFCOUNT
DO WHILE N > 0
 AOEXEC ALERT FUNCTION(READQ) QUEUE(NETWORK) POSITION(&N) SSID(RE61)
 IF &LASTCC = 0 THEN DO
 IF &AMFUDATA GT &THRSHOLD THEN DO
 AOEXEC ALERT KEY(&AMFKEY) FUNCTION(DELETE) QUEUE(NETWORK) SSID(RE61)
 AOEXEC ALERT KEY(&AMFKEY) FUNCTION(ADD) TEXT(’&AMFTEXT’)
 QUEUE(SUPERVSE) SSID(RE61)
 END
 END
 SET N = &N - 1
END

You can periodically check the queues for ALERTs that have not been
responded to and escalate their priority.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-31

AOEXEC ALERT
In the above EXEC, the READQ function is used to set AMFCOUNT equal
to the number of ALERTs in the NETWORK queue. The EXEC then reads
each ALERT from the NETWORK queue using POSITION and tests the user
data presented in the AMFUDATA variable.

If the criteria is met, the ALERT is deleted from the NETWORK queue using
the AMFKEY variable (the key of the ALERT). Then the ALERT is added to
the supervisor’s queue using the same key and using the original text in the
AMFTEXT variable.

Note: This example assumes that the ALERTs were originally created with
some meaningful user data (such as the date and time).

Examples of ALERT Escalation

The following examples show how to create ALERTs with the ESCALATE
parameter so that an ALERT can increase or decrease in priority over
specified intervals of time.

Example 1: Escalating an ALERT from lowest to highest priority:

The ALERT in this example will be upgraded from Informational to Critical
priority over five intervals. The following list describes the properties of the
ALERT:

• The original priority of the ALERT is Informational
(PRIORITY(info)).

• The ALERT’s priority will be upgraded (Escalate(up)).

• The priority will be upgraded gradually over the intervals of 10 minutes,
20 minutes, 30 minutes, 30 minutes, and 40 minutes
(Interval(10,20,30,30,40)).

• When the ALERT reaches the final priority level, the ALERT should be
deleted (Dispose(delete)).

REXX EXEC example:

"AOEXEC ALERT KET(KEY1) TEXT(’test alert’) PRIORITY(INFO) ESCALATE(UP)" ,
 "INTERVAL(10,20,30,30,40) DISPOSE(DELETE) SSID(RE61)"
 1 2 3 4 5
BMC Software, Inc., Confidential and Proprietary Information

9-32 MAINVIEW AutoOPERATOR Advanced Automation Guide

AOEXEC ALERT
CLIST EXEC example:

AOEXEC ALERT KET(KEY1) TEXT(’test alert’) PRIORITY(INFO) ESCALATE(UP) +
 INTERVAL(10,20,30,30,40) DISPOSE(DELETE) SSID(RE61)
 1 2 3 4 5

When the EXEC that is associated with this ALERT is scheduled, the
ALERT’s original priority is Informational. After 10 minutes (1), the priority
is upgraded automatically from Informational to Warning. The ALERT stays
at the Warning priority for 20 minutes (2) and is upgraded to Minor. The
ALERT stays at Minor priority for 30 minutes (3) before being upgraded to
Major. It stays at Major priority for 30 minutes (4) before being upgraded to
Critical. After remaining at Critical for 40 minutes (5), the ALERT is deleted.

Example 2: Downgrading ALERT priority over two intervals:

The ALERT in this example will be downgraded over two intervals. The
following list describes the properties of the ALERT:

• The original priority of the ALERT is Minor (PRIORITY(MINOR)).

• The ALERT’s priority will be downgraded (ESCALATE(DOWN)).

• The priority will be downgraded over the intervals of 10 minutes and 20
minutes (INTERVAL(10,20)).

• When the ALERT reaches the final priority level, the ALERT should be
deleted (DISPOSE(DELETE)).

REXX EXEC example:

"AOEXEC ALERT KEY(KEY2) TEXT(’test alert’) PRIORITY(MINOR) ESCALATE(DOWN) " ,
 "INTERVAL(10,20) DISPOSE(DELETE) SSID(RE61)"
 1 2

CLIST EXEC example:

AOEXEC ALERT KEY(KEY2) TEXT(’test alert’) PRIORITY(MINOR) ESCALATE(DOWN) +
 INTERVAL(10,20) DISPOSE(DELETE) SSID(RE61)
 1 2
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-33

AOEXEC ALERT
When the EXEC that is associated with this ALERT is scheduled, the
ALERT’s original priority is Minor. After 10 minutes (1), the priority is
downgraded automatically from Minor to Warning. The ALERT remains at
the Warning priority for 20 minutes (2) and is deleted at the end of the
interval.

The intervals in this example also can be validly coded as follows:

INTERVAL(10,20,)
or
Interval(10,20,,)
or
Interval(10,20,,,,)

Example 3: Upgrading an ALERT and scheduling an escalation EXEC:

The ALERT in this example will be upgraded over two time intervals and, at
the end of the second interval, an escalation EXEC will be scheduled. The
following list describes the properties of the ALERT:

• The original priority of the ALERT is Minor (PRIORITY(MINOR)).

• The ALERT’s priority will be upgraded (ESCALATE(UP)).

• The priority will be upgraded over the intervals of 10 minutes and 20
minutes (INTERVAL(10,20)).

• When the ALERT reaches the final priority level, the ALERT should be
kept until it is manually deleted (DISPOSE(KEEP)).

• When the ALERT completes its final interval, an EXEC named E100
with three parameters is scheduled (ESCEXEC(’E100 p1 p2 p3’)).

"AOEXEC ALERT KEY(KEY2) TEXT(’test alert’) PRIORITY(MINOR) ESCALATE(UP) ",
"INTERVAL(10, 20) DISPOSE(KEEP) ESCEXEC(’E100 p1 p2 p3’)"
 1 2

When the EXEC that schedules this ALERT is scheduled, the ALERT’s
original priority is Minor. After 10 minutes (1), the priority is upgraded
automatically from Minor to Major. The ALERT remains at the Major
priority for 20 minutes (2) and the EXEC e100 with its three parameters is
scheduled at the end of the interval. The ALERT remains at the Major
priority until it is manually deleted.
BMC Software, Inc., Confidential and Proprietary Information

9-34 MAINVIEW AutoOPERATOR Advanced Automation Guide

AOEXEC ALERT
Example 4: Skipping ALERT priorities during ALERT escalation:

The ALERT in this example will be upgraded from Informational to Major
while skipping the intermediate ALERT priorities. The following list
describes the properties of the ALERT:

The original priority of the ALERT is Informational(PRIORITY(INFO)).

• The ALERT’s priority will be upgraded (ESCALATE(UP)).

• The priority will be upgraded over the two intervals of 10 and 20
minutes.

However, to skip ALERT priorities, you must specify an interval of zero
minutes for each of the intervals you want to skip.

In this example, the ALERT will skip two priorities and change from
Informational priority directly to Major after a 10-minute interval
(INTERVAL(10,0,0,20)).

• When the ALERT reaches the final priority level, the ALERT should be
kept until it is manually deleted (DISPOSE(KEEP)).

• When the ALERT completes its final interval of 20 minutes, an EXEC
named E100 with three parameters is scheduled (ESCEXEC(’E100 p1
p2 p3’)).

REXX EXEC example:

"AOEXEC ALERT KEY(KEY2) TEXT(’test alert’) PRIORITY(INFO) ESCALATE(UP) ",
"INTERVAL(10,0,0,20) DISPOSE(KEEP) ESCEXEC(’E100 p1 p2 p3’) SSID(RE61)"
 1 2 3 4

CLIST EXEC example:

ALERT KEY(KEY2) TEXT(’test alert’) PRIORITY(INFO) ESCALATE(UP) ,
 INTERVAL(10,0,0,20) DISPOSE(KEEP) ESCEXEC(’E100 p1 p2 p3’) SSID(RE61)
 1 2 3 4

When the EXEC that schedules this ALERT is scheduled, the ALERT’s
original priority is Informational. After 10 minutes (1), the ALERT’s priority
is upgraded automatically from Informational to Major. To skip the
intermediate priorities, you must code zero minutes for both Warning and
Minor priorities (2 and 3).
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-35

AOEXEC ALERT
The ALERT remains at the Major priority for 20 minutes (4) and the EXEC
e100 with its three parameters is scheduled at the end of the interval. The
ALERT remains at the Major priority until it is manually deleted.

The intervals in this example also can be validly coded as follows:

INTERVAL(10,0,0,20,)
or
INTERVAL(10,0,0,20,,)

Example 5: Showing the elapsed time for an escalated ALERT

The ALERT in this example will be upgraded from Minor to Major in one
10-minute interval. The following list describes the properties of the ALERT:

• The original priority of the ALERT is Minor (PRIORITY(MINOR)).

• The ALERT’s priority will be upgraded (ESCALATE(UP)).

• The priority will be upgraded over one interval of 10 minutes
(INTERVAL(10)).

• When the ALERT reaches the final priority level, the ALERT should be
deleted (DISPOSE(DELETE)).

• When the ALERT completes its final interval, an EXEC named E100
with three parameters is scheduled (ESCEXEC(’E100 p1 p2 p3’)).

REXX EXEC example:

"AOEXEC ALERT KEY(KEY2) TEXT(’test alert’) PRIORITY(MINOR) ESCALATE(UP) ",
 "INTERVAL(10, 20) DISPOSE(DELETE) ESCEXEC(’E100 p1 p2 p3’) SSID(RE61)"

CLIST EXEC example:

AOEXEC ALERT KEY(KEY2) TEXT(’test alert’) PRIORITY(MINOR) ESCALATE(UP) +
 INTERVAL(10, 20) DISPOSE(DELETE) ESCEXEC(’E100 p1 p2 p3’) SSID(RE61)

The following example shows the life of the ALERT over time:
BMC Software, Inc., Confidential and Proprietary Information

9-36 MAINVIEW AutoOPERATOR Advanced Automation Guide

AOEXEC ALERT
1:00pm 1:10pm 1:30pm

A Minor ALERT --> The ALERT is upgraded --> The ALERT is
deleted
is created to Major Priority and the EXEC e100
 is scheduled
The ALERT stays at this The ALERT stays at this
priority for 10 minutes priority for 20 minutes

Examples of Invalid Coding with the Interval Parameter

Some examples of invalid coding are as follows:

Example 1: The interval keyword must contain at least one value.

REXX EXEC example:

"AOEXEC ALERT KEY(KEY4) TEXT(’test alert’) PRIORITY(MAJOR) ESCALATE(UP) ",
 "INTERVAL(, 10, 10) SSID(RE61)"

CLIST EXEC example:

AOEXEC ALERT KEY(KEY4) TEXT(’test alert’) PRIORITY(MAJOR) ESCALATE(UP) +
 INTERVAL(, 10, 10) SSID(RE61)

Example 2: You can only specify as many intervals as there are between an
originating priority and the end priority.

REXX EXEC example:

"AOEXEC ALERT KEY(KEY4) TEXT(’test alert’) PRIORITY(INFO) ESCALATE(UP)",
 "INTERVAL(, 10,,20) SSID(RE61)"

CLIST EXEC example:

AOEXEC ALERT KEY(KEY4) TEXT(’test alert’) PRIORITY(INFO) ESCALATE(UP) +
 INTERVAL(, 10,,20) SSID(RE61)

In example 2, there is only one priority that a major ALERT can be upgraded
to (Critical) and yet three intervals are specified.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-37

AOEXEC ALERT
Example 3: The interval keyword cannot have null values for intervals.

REXX EXEC example:

"AOEXEC ALERT KEY(KEY4) TEXT(’test alert’) PRIORITY(MAJOR) ESCALATE(UP)”
 “INTERVAL(,10,10) SSID(RE61)"

or

"AOEXEC ALERT KEY(KEY4) TEXT(’test alert’) PRIORITY(INFO) ESCALATE(UP)”
 “INTERVAL(,10,,20) SSID(RE61)"

CLIST EXEC example:

AOEXEC ALERT KEY(KEY4) TEXT(’test alert’) PRIORITY(MAJOR) ESCALATE(UP) +
 Interval(,10,10) SSID(RE61)

or

AOEXEC ALERT KEY(KEY4) TEXT(’test alert’) PRIORITY(info) ESCALATE(UP)” +
 INTERVAL(,10,,20) SSID(RE61)

Example 4: The intervals cannot have negative values.

REXX EXEC example:

"AOEXEC ALERT KEY(KEY4) TEXT(’test alert') PRIORITY(INFO) ESCALATE(UP)" ,
"INTERVAL(, 10,-20) SSID(RE61)"

CLIST EXEC example:

AOEXEC ALERT KEY(KEY4) TEXT(’test alert') PRIORITY(INFO) ESCALATE(UP) +
INTERVAL(, 10,-20) SSID(RE61)

Examples of the PUBLISH Parameter

The following examples demonstrate the usage of the AOEXEC ALERT
PUBLISH parameter.
BMC Software, Inc., Confidential and Proprietary Information

9-38 MAINVIEW AutoOPERATOR Advanced Automation Guide

AOEXEC ALERT
Example 1: This example creates an ALERT and publishes it to all
connected PATROL EM workstations, deleting any ALERTs already present
with the same queue name and key.

REXX EXEC example:

"AOEXEC ALERT KEY(TESTKEY) TEXT(‘THIS IS A TEST’) FUNCTION(ADD)
PUBLISH(REPLACE)" ,
 "QUEUE(TEST AREA) SSID(RE61)"

CLIST EXEC example:

AOEXEC ALERT KEY(TESTKEY) TEXT(‘THIS IS A TEST’) FUNCTION(ADD)
PUBLISH(REPLACE) +
 QUEUE(TEST AREA) SSID(RE61)

Example 2: This example creates an ALERT but does not publish it to any
connected MAINVIEW AutoOPERATOR Elan Workstation.

REXX EXEC example:

"AOEXEC ALERT KEY(TESTKEY) TEXT(‘DO NOT PUBLISH ME’) FUNCTION(ADD)
PUBLISH(NO)" ,
 "QUEUE(MAIN) SSID(RE61)"

CLIST EXEC example:

AOEXEC ALERT KEY(TESTKEY) TEXT(‘DO NOT PUBLISH ME’) FUNCTION(ADD)
PUBLISH(NO) +
 QUEUE(MAIN) SSID(RE61)
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-39

AOEXEC MSG
AOEXEC MSG

This command logs a message in the BBI-SS PAS Journal log.

The following table describes the parameters.

Note: Specifying a null variable for Message text causes an error.

Return codes are listed in the following table.

Command Parameters

AOEXEC MSG ‘Message text’
SS | SSID(subsystem identifier)
[TGTSS(target subsystem identifier)]

Parameter Function Notes

Message text Text of the message to issue. Maximum length is 252 bytes.

SS | SSID SS | SSID() specifies the subsystem
identifier of a local subsystem.

Required keyword.

TGTSS If the TGTSS() keyword is specified, the
subsystem specified by the SS | SSID()
keyword is considered a router and the
actual function is executed on the
subsystem specified by TGTSS(). If
TGTSS() is not specified, the requested
function is executed on the subsystem
specified by the SS | SSID keyword.

Optional keyword.
It must be in the same sysplex as the
BBI-SS specified with the SSID()
keyword, and both systems must have
the same XCFGROUP specified in the
BBPARM BBISSPxx.

Value Description

-1 When the TGTSS() keyword is used, specifies that either the request timed out or the
target system was shut down in the middle of a request.

0 Command was executed successfully.

8 Supplied message text exceeds limit of 252 characters.

16 Invalid syntax used.

32 No XCF connection exists between the subsystem specified with the SS | SSID()
keyword and the subsystem specified using the TGTSS() keyword. The target subsystem
is most likely not active or not in the same sysplex as the originating subsystem.

36 The subsystem specified using the SS | SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible versions of AOAnywhere exist.
BMC Software, Inc., Confidential and Proprietary Information

9-40 MAINVIEW AutoOPERATOR Advanced Automation Guide

AOEXEC MSG
Example

This example sends a message to the BBI-SS PAS monitoring the target
named CICA. The message is logged on the remote Journal and no entry is
made on the originating system’s Journal.

REXX EXEC example:

“AOEXEC MSG 'MANUFACTURING DATABASE IS OFFLINE' SSID(RE61) TGTSS(CICA)”

CLIST EXEC example:

AOEXEC MSG 'MANUFACTURING DATABASE IS OFFLINE' SSID(RE61) TGTSS(CICA)

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.

56 The BBI-SS PAS is not an AutoOPERATOR. If this BBI-PAS is meant to be an
AutoOPERATOR, ensure that the BBKEYS member contains valid AutoOPERATOR
keys and product=AAO is specified in BBISSP00.

Value Description
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-41

AOEXEC NOTIFY
AOEXEC NOTIFY

This command sends a request through AutoOPERATOR to issue a pager
call using the MAINVIEW AutoOPERATOR Elan workstation component
(if it is installed).

The following table describes the parameters.

Command Parameters

AOEXEC NOTIFY NAME(Elan contact name)
[INFO(‘Text’)]
SS | SSID(subsystem identifier)
[TGTSS(target subsystem identifier)]

Parameter Function Notes

NAME The contact name defined to MAINVIEW
AutoOPERATOR Elan workstation.

1-32 characters alphanumeric.
MAINVIEW AutoOPERATOR Elan
workstation equates this name to a
telephone number to be dialed.

INFO Any information to be passed and placed
on the pager.

1-12 alphanumeric characters.
Text must be included in quotation marks
if it contains blanks.

SS | SSID SS | SSID() specifies the subsystem
identifier of a local subsystem.

Required keyword.

TGTSS If the TGTSS() keyword is specified, the
subsystem specified by the SS | SSID()
keyword is considered a router and the
actual function is executed on the
subsystem specified by TGTSS(). If
TGTSS() is not specified, the requested
function is executed on the subsystem
specified by the SS | SSID keyword.

Optional keyword.
It must be in the same sysplex as the
BBI-SS specified with the SSID()
keyword, and both systems must have
the same XCFGROUP specified in the
BBPARM BBISSPxx.
BMC Software, Inc., Confidential and Proprietary Information

9-42 MAINVIEW AutoOPERATOR Advanced Automation Guide

AOEXEC NOTIFY
Return codes are listed in the following table.

Example

This command notifies the individual SYSPROG through MAINVIEW
AutoOPERATOR Elan Workstation, passing the information SYSTEM to the
pager.

REXX EXEC example:

"AOEXEC NOTIFY NAME(SYSPROG) INFO(SYSTEM) SSID(RE61)"

CLIST EXEC example:

AOEXEC NOTIFY NAME(SYSPROG) INFO(SYSTEM) SSID(RE61)

Value Description

-1 When the TGTSS() keyword is used, specifies that either the request timed out or the
target system was shut down in the middle of a request.

0 MAINVIEW AutoOPERATOR Elan workstation successfully passed the information.

8 The request timed out.

12 MAINVIEW AutoOPERATOR Elan workstation could not execute the request.

16 MAINVIEW AutoOPERATOR Elan workstation communications were not established.

32 No XCF connection exists between the subsystem specified with the SS | SSID()
keyword and the subsystem specified using the TGTSS() keyword. The target subsystem
is most likely not active or not in the same sysplex as originating subsystem.

36 The subsystem specified using the SS | SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible versions of AOAnywhere exist.

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.

56 The BBI-SS PAS is not an AutoOPERATOR. If this BBI-PAS is meant to be an
AutoOPERATOR, ensure that the BBKEYS member contains valid AutoOPERATOR
keys and product=AAO is specified in BBISSP00.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-43

AOEXEC SELECT
AOEXEC SELECT

This command invokes an EXEC or a program. This section also describes
how to invoke programs written in other programming languages.

The following table describes the parameters.

Command Parameters

AOEXEC SELECT EXEC(‘execname parm1...parm2...parmn’)
[PRI(NORMAL|HIGH)]
[WAIT(NO|YES)]
SS | SSID(subsystem identifier)
[SHARE(var1....var2....var3...varn)]
[TGTSS(target susbsystem identifier)]
[VAR(var1....var2....var3...varn)]

Parameter Function Notes

EXEC(‘execname and
any parms’)

Name of EXEC to invoke. If there are
parameters, the EXEC name and the
parameters must be enclosed in
quotation marks.
If only the EXEC name is specified, do
not use quotation marks.

Maximum length is 255 characters.
Required parameter.

PRI Execution priority of the EXEC to be
invoked

Either NORMAL or HIGH. Applies only
to EXEC keyword. It overrides
AAOEXP00 parameters. PRI is valid with
WAIT(YES) and WAIT(NO).

WAIT Suspension criterion for invoking EXEC Either YES or NO.
WAIT(YES) causes the AOEXEC
command to be suspended until the
invoked EXEC in the BBI-SS PAS has
completed. WAIT(NO) is returned as
soon as a determination has been made
whether the EXEC to be invoked actually
exists.
When VAR() is specified, WAIT(YES) will
be forced.
Note: When WAIT (YES) is used, the
return code that was passed in
IMFEXEC EXIT is returned in IMFEXRC.

SS | SSID SS | SSID() specifies the subsystem
identifier of a local subsystem.

Required keyword.
BMC Software, Inc., Confidential and Proprietary Information

9-44 MAINVIEW AutoOPERATOR Advanced Automation Guide

AOEXEC SELECT
Return codes from the AOEXEC SELECT command are listed in the
following table.

TGTSS If the TGTSS() keyword is specified, the
subsystem specified by the SS | SSID()
keyword is considered a router and the
actual function is executed on the
subsystem specified by TGTSS(). If
TGTSS() is not specified, the requested
function is executed on the subsystem
specified by the SS | SSID keyword.

Optional keyword.
It must be in the same sysplex as the
BBI-SS specified with the SSID()
keyword, and both systems must have
the same XCFGROUP specified in the
BBPARM BBISSPxx.

VAR Specifies the names of any number of
variables that will be exchanged with the
LOCAL variable pool of the selected
EXEC.

Before the target EXEC begins, the
contents of these variables are placed
as variables of the same name into the
LOCAL pool.
When the EXEC ends, the contents of
these variables in the target EXEC’s
LOCAL pool are extracted again and
placed as TSO variables of the EXEC of
the invoking EXEC.

Value Description

-1 When the TGTSS() keyword is used, specifies that either the request timed out or the
target system was shut down in the middle of a request.

0 Command was executed successfully.

8 EXEC specified but is not found in BBPROC.

16 Invalid syntax used.

32 No XCF connection exists between the subsystem specified with the SS | SSID()
keyword and the subsystem specified using the TGTSS() keyword. The target subsystem
is most likely not active or not in the same sysplex as originating subsystem.

36 The subsystem specified using the SS | SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible versions of AOAnywhere exist.

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.

56 The BBI-SS PAS is not an AutoOPERATOR. If this BBI-PAS is meant to be an
AutoOPERATOR, ensure that the BBKEYS member contains valid AutoOPERATOR
keys and product=AAO is specified in BBISSP00.

Parameter Function Notes
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-45

AOEXEC SELECT
Example

This example command invokes the EXEC CHKENQ on the remote SS
SYSB, passing the parameter SYS2.PROD.XLIB

REXX EXEC example:

"AOEXEC SELECT EXEC(‘CHKENQ SYS2.PROD.XLIB’) SSID(RE61) TGTSS(SYSB)"

CLIST EXEC example:

AOEXEC SELECT EXEC(‘CHKENQ SYS2.PROD.XLIB’) SSID(RE61) TGTSS(SYSB)
BMC Software, Inc., Confidential and Proprietary Information

9-46 MAINVIEW AutoOPERATOR Advanced Automation Guide

AOEXEC SYSINFO
AOEXEC SYSINFO

This command searches the current MVS image for an AutoOPERATOR
subsystem that runs AOAnywhere support. It returns information in variables
regarding the success and failure of this search, as well as the XCF group
name in which the targeted (or defaulted to) subsystem resides. Additionally,
it returns the identifiers of all AutoOPERATOR subsystems that are
connected to each other (in the sysplex) and it identifies those subsystems
that have been designated as Alert Receivers.

This information can be used in subsequent requests against AOAnywhere,
which require the presence of a SSID identifier.

The minimum required version level for an AutoOPERATOR subsystem to
support AOAnywhere is 6.1.

This command has the following parameters.

The following table describes the parameters.

Command Parameters

AOEXEC SYSINFO [SS | SSID()]
[GROUP()]

Table 9-4 Parameter Description

Parameter Function Notes

SS | SSID SS | SSID() specifies the subsystem
identifier from which system information
is obtained. One to four alphanumeric
characters. Optional.

This parameter should be used only
when separate XCF groups will be used
within a sysplex. An XCF group for a
specific subsystem is specified on the
XCFGROUP= parameter in BBPARM
member BBISSP00. When this
parameter is specified, only information
for the subsystems connected to the
same XCF group as the targeted
subsystem is obtained. This parameter
should not be used in conjunction with
the GROUP() parameter.
When neither SSID() nor GROUP() is
specified, GROUP(BMCAB) is the
default. The first subsystem on the
current OS/390 image belonging to this
group will be referenced to obtain
information about all other
AutoOPERATOR subsystems connected
to each other through this XCF group.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-47

AOEXEC SYSINFO
The following table describes the variables that AOEXEC SYSINFO returns.

GROUP GROUP() specifies the XCF group from
which information is obtained. One to
eight alphanumeric characters in
accordance with IBM XCF group names.
Optional.

This parameter should be used only
when separate XCF groups will be used
within a sysplex. An XCF group for a
specific subsystem is specified on the
XCFGROUP= parameter in BBPARM
member BBISSP00. When this
parameter is specified, only information
for the subsystems connected to the
same XCF group as the targeted
subsystem is obtained.
At least one AutoOPERATOR subsystem
that belongs to the specified XCF group
should reside on the current OS/390
image. Otherwise this request will fail.
XCFGROUP() or XCF() are valid aliases
of this command.
When neither SSID() nor GROUP() is
specified, GROUP(BMCAB) is the
default. The first subsystem on the
current OS/390 image belonging to this
group will be referenced to obtain
information about all other
AutoOPERATOR subsystems connected
to each other through this XCF group.

Variable Name Description

SYSTEM The name of the current OS/390 image (commonly referred to as the system
name)

ALRT1 through ALRTx A value of YES or NO. YES means this subsystem has been designated as an
ALERT receiver by specifying ALRTRCVE=YES in BBPARM member BBISSP00.
Otherwise the returned value is NO.

IMFXCFGP The name of the default or target XCF group referred to by the command. If the
SSID() parameter is specified, it contains the name of the XCF group of which the
targeted subsystem is a member. If GROUP() was specified, the name is identical
to the contents of this keyword.

LCNT The number of lines returned.

SSID1 through SSIDx An AutoOPERATOR subsystem (SSID) name that is supporting AOAnywhere
where x is between 1 and the value contained in LCNT variable.

SYSN1 through SYSNx The names of the MVS images that the relative SSID is active on where x is
between 1 and the value contained in LCNT .

Note: The SSID, SYSN and ALRT variables are returned in sets. For example, SSID1, SYSN1 and ALRT1 are
returned together; SSID2, SYSN2 and ALRT2 are returned together, and so on.

Table 9-4 Parameter Description (continued)
BMC Software, Inc., Confidential and Proprietary Information

9-48 MAINVIEW AutoOPERATOR Advanced Automation Guide

AOEXEC SYSINFO
Return codes are listed in the following table.

REXX EXEC example:

/* REXX */
"AOEXEC SYSINFO"
if rc<> 0 then do
 say ’No active subsystems found’
 exit
end
do i=1 to lcnt
 if value(’SYSN’i)=system then do
 myss=value(’SSID’i)
 mysys=value(’SYSN’i)
 leave
 end
end
"AOEXEC VGET VAR(QJNLSTA) SSID("myss")"
say ’Current journaling status on ’strip(mysys)’ is ’qjnlsta

Value Description

44 Processing was terminated in the middle of processing an AOEXEC SYSINFO.
If more than one AutoOPERATOR PAS capable of processing an AOEXEC SYSINFO
command is active on the local system, it is possible that this situation is temporary and
a subsequent execution of SYSINFO will be successful.

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.

56 The BBI-SS PAS is not an AutoOPERATOR. If this BBI-PAS is meant to be an
AutoOPERATOR, ensure that the BBKEYS member contains valid AutoOPERATOR keys
and product=AAO is specified in BBISSP00.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-49

AOEXEC SYSINFO
CLIST EXEC example:

PROC 0
CONTROL SYMLIST CONLIST LIST
AOEXEC SYSINFO
IF &LASTCC NE 0 THEN DO
 WRITE No active subsystems found’
 EXIT
END
SET I=1
DO WHILE &I LE &LCNT
 SET THISSYS=&&&STR(SYSN)&I
 IF &THISSYS=&SYSTEM THEN DO
 SET MYSS=&&&STR(SSID)&I
 SET MYSYS=&&&STR(SYSN)&I
 SET I=&LCNT
 END
 SET I=&I+1
END
AOEXEC VGET VAR(QJNLSTA) SSID(&MYSS)
WRITE Current journaling ststus on &MYSYS is &QJNLSTA
BMC Software, Inc., Confidential and Proprietary Information

9-50 MAINVIEW AutoOPERATOR Advanced Automation Guide

AOEXEC VDEL
AOEXEC VDEL

This command deletes one or more variables from one of the
AutoOPERATOR variable pools.

The following table describes the parameters.

Command Parameters

AOEXEC VDEL [POOL(SHARED|PROFILE)]
SS | SSID(subsystem identifier)
[TGTSS(target susbsystem identifier)]
[VAR(var1....var2....var3...varn)]

Table 9-5 AOEXEC VDEL Parameters

Parameter Function Notes

POOL The pool in which the
designated variables reside

One of the following pools:
• SHARED
• PROFILE
SHARED is the default.

SS | SSID SS | SSID() specifies the
subsystem identifier of a local
subsystem.

Required keyword.

TGTSS If the TGTSS() keyword is
specified, the subsystem
specified by the SS | SSID()
keyword is considered a router
and the actual function is
executed on the subsystem
specified by TGTSS(). If
TGTSS() is not specified, the
requested function is executed
on the subsystem specified by
the SS | SSID keyword.

Optional keyword.
It must be in the same sysplex as the BBI-
SS specified with the SSID() keyword, and
both systems must have the same
XCFGROUP specified in the BBPARM
BBISSPxx.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-51

AOEXEC VDEL
Note: This command does not affect variables that have already been
retrieved from one of the pools.

Return codes are listed in the following table.

VAR The name of one or more
variables

The maximum length of this parameter is
252 bytes. All variables in a pool can be
deleted by using the identifier ALL instead
of naming all variables individually. A
variable cannot begin with a numeric nor
can it contain special characters.
An example of using a pattern is
AOEXEC VDEL VAR(CICS*)
SSID(RE61)
The variable names can be generically
expressed by using an asterisk. However,
the VDEL command statement assumes
the presence of an asterisk means the end
of the string.
AOEXEC VDEL VAR(ABC*D)
SSID(RE61)
is treated as if you coded
AOEXEC VDEL VAR(ABC*)
SSID(RE61)
In addition, if you try to use an asterisk
within a string of text, you will receive a
return code for invalid syntax usage. For
example, if you try to issue a pattern
AOEXEC VDEL VAR(CSM*MSG12)
SSID(RE61)
you will receive a return code of IMFCC=16
(for invalid syntax usage).
Variables beginning with the character Q
are reserved for system variables and
cannot be modified.

Value Description

-1 When the TGTSS() keyword is used, specifies that either the request timed out or the
target system was shut down in the middle of a request.

0 Command was executed successfully.

8 Variable does not exist.

16 Invalid syntax used.

20 Severe error (internal) and pool was not found.

24 Variable name not specified.

Table 9-5 AOEXEC VDEL Parameters (continued)

Parameter Function Notes
BMC Software, Inc., Confidential and Proprietary Information

9-52 MAINVIEW AutoOPERATOR Advanced Automation Guide

AOEXEC VDEL
Example

This example deletes all variables ending in the characters TEST from the
shared variable pool. It uses the VLST command to retrieve all variable
names.

REXX EXEC example:

"AOEXEC VLST VAR(*) POOL(SHARED) SSID(RE61)"
do i=1 to lcnt
 if length(value(’line’.i))< 4 then iterate
 if right(value(value(line.i)), 4)=’TEST’ then
 "AOEXEC VDEL VAR("value(line.i)") POOL(SHARED) SSID(RE61)"
end

CLIST EXEC example:

AOEXEC VLST VAR(*) POOL(SHARED) SSID(RE61)
SET I=1
DO WHILE &I LE &CNT
 SET LEN=&LENGTH(&SYSNSUB(2, &LINEI))
 IF &LEN LT 4 THEN GOTO SKIP
 IF STR(&SUBSTR(&LEN-3:&LEN, &SYSNSUB(2, &&LINEI))) +
 NE TEST THEN GOTO SKIP
 AOEXEC VDEL VAR(&SYSNSUB(2, &&LINE&I)) POOL(SHARED) SSID(RE61)
SKIP: +
 SET I=&I+1
END

32 No XCF connection exists between the subsystem specified with the SS | SSID()
keyword and the subsystem specified using the TGTSS() keyword. The target
subsystem is most likely not active or not in the same sysplex as originating
subsystem.

36 The subsystem specified using the SS | SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible versions of AOAnywhere exist.

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.

56 The BBI-SS PAS is not an AutoOPERATOR. If this BBI-PAS is meant to be an
AutoOPERATOR, ensure that the BBKEYS member contains valid AutoOPERATOR
keys and product=AAO is specified in BBISSP00.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-53

AOEXEC VGET
AOEXEC VGET

This command copies one or more variables from one of the
AutoOPERATOR pools into the EXECs function pool.

The following table describes the parameters.

Return codes are listed in the following table.

Command Parameters

AOEXEC VGET [POOL(SHARED|PROFILE)]
SS | SSID(subsystem identifier)
[TGTSS(target susbsystem identifier)]
VAR(var1....var2....var3...varn)

Parameter Function Notes

POOL The pool in which the designated
variables reside

One of the following pools:
• SHARED
• PROFILE
SHARED is the default.

SS | SSID SS | SSID() specifies the subsystem
identifier of a local subsystem.

Required keyword.

TGTSS If the TGTSS() keyword is specified, the
subsystem specified by the SS | SSID()
keyword is considered a router and the
actual function is executed on the
subsystem specified by TGTSS(). If
TGTSS() is not specified, the requested
function is executed on the subsystem
specified by the SS | SSID keyword.

Optional keyword.
It must be in the same sysplex as the
BBI-SS specified with the SSID()
keyword, and both systems must have
the same XCFGROUP specified in the
BBPARM BBISSPxx.

VAR The name of one or more variables Each variable name can be up to 32
characters. The maximum length of the
combined variable values is 252 bytes.

Value Description

-1 When the TGTSS() keyword is used, specifies that either the request timed out or the
target system was shut down in the middle of a request.

0 Command was executed successfully.

8 Variable does not exist.

12 Variable name not specified.

16 Invalid syntax used.

20 Severe error (internal) and pool was not found.

32 No XCF connection exists between the subsystem specified with the SS | SSID()
keyword and the subsystem specified using the TGTSS() keyword. The target subsystem
is most likely not active or not in the same sysplex as originating subsystem.
BMC Software, Inc., Confidential and Proprietary Information

9-54 MAINVIEW AutoOPERATOR Advanced Automation Guide

AOEXEC VGET
Example

This example displays the contents of the EXECs SHARED variable pool. It
uses the VLST command to retrieve the names of all variables in that pool.

It then uses the VGET command to retrieve them one after the other and
displays their contents.

REXX EXEC example:

"AOEXEC VLST VAR(*) POOL(SHARED) SSID(RE61)"
do i=1 to lcnt
 var=value(value(line)i)
 "AOEXEC VGET VAR("var") POOL(SHARED) SSID(RE61)"
 say var
end

CLIST EXEC example”

PROC 0
AOEXEC VLST VAR(*) POOL(SHARED) SSID(RE61)
SET I=1
DO WHILE &I LE &LCNT
 SET VAR=LINE&I
 SET VAR=&&&VAR
 AOEXEC VGET VAR(&VAR) POOL(SHARED) SSID(RE61)
 WRITE &VAR
 SET I=&I+1
END

36 The subsystem specified using the SS | SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible versions of AOAnywhere exist.

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.

56 The BBI-SS PAS is not an AutoOPERATOR. If this BBI-PAS is meant to be an
AutoOPERATOR, ensure that the BBKEYS member contains valid AutoOPERATOR
keys and product=AAO is specified in BBISSP00.

Value Description
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-55

AOEXEC VLST
AOEXEC VLST

This command lists variable names defined in the AutoOPERATOR pools. It
returns those names in LOCAL variables LINE1 through LINEn and sets
LCNT to the number of LINEs.

The following table describes the parameters.

Command Parameters

AOEXEC VLST [POOL(SHARED|PROFILE)]
SS | SSID(subsystem identifier)
[TGTSS(target susbsystem identifier)]
VAR(variable name)

Parameter Function Notes

POOL The pool in which the designated
variables reside

One of the following pools:
• SHARED
• PROFILE
SHARED is the default.

SS | SSID SS | SSID() specifies the subsystem
identifier of a local SS.

Required keyword

TGTSS If the TGTSS() keyword is specified, the
subsystem specified by the SS | SSID()
keyword is considered a router and the
actual function is executed on the
subsystem specified by TGTSS(). If
TGTSS() is not specified, this is the
subsystem where the requested function
is executed.

Optional keyword.
It must be in the same sysplex as the
BBI-SS specified with the SSID()
keyword, and both systems must have
the same XCFGROUP specified in the
BBPARM BBISSPxx.

VAR The name of one variable Required parameter.
Only one variable can be specified and
the name must be enclosed in
parentheses.
The variable name can be 1-30
characters alphanumeric conforming to
TSO coding conventions.
The variable name can be a pattern
(A+B*)
where the following wildcards are
supported:
+ (plus sign)
Matches any one character.
* (asterisk)
Matches zero to any number of
characters.
BMC Software, Inc., Confidential and Proprietary Information

9-56 MAINVIEW AutoOPERATOR Advanced Automation Guide

AOEXEC VLST
Return codes are listed in the following table.

Example

The following EXEC uses the AOEXEC VLST command to retrieve all the
variables that begin with RETRY and then reports the number of retries.
Variables LINE1 through LINExx (where xx is IMFNOL) will contain the
number of found variables.

REXX EXEC example:

/* REXX */
"AOEXEC VLST VAR(RETRY*) POOL(SHARED) SSID(RE61)"
if rc = 8 then exit
do i=1 to lcnt
 contents=value(’LINE’I)
 "AOEXEC VGET VAR("contents") SSID(RE61)"
 contents=value(contents)
 count=left(contents,6)
 nod=substr(contents,7)
 say ’Terminal : ’nod’ Retries: ’count
END

Value Description

-1 When the TGTSS() keyword is used, specifies that either the request timed out or the
target system was shut down in the middle of a request.

0 Command was executed successfully.

12 Variable pool is not available.

16 Invalid syntax used.

20 Variable name not specified.

32 No XCF connection exists between the subsystem specified with the SS | SSID()
keyword and the subsystem specified using the TGTSS() keyword. The target subsystem
is most likely not active or not in the same sysplex as originating subsystem.

36 The subsystem specified using the SS | SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible versions of AOAnywhere exist.

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.

56 The BBI-SS PAS is not an AutoOPERATOR. If this BBI-PAS is meant to be an
AutoOPERATOR, ensure that the BBKEYS member contains valid AutoOPERATOR
keys and product=AAO is specified in BBISSP00.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-57

AOEXEC VLST
CLIST EXEC example:

AOEXEC VLST VAR(RETRY*) POOL(SHARED) SSID(RE61)
SET RC = &LASTCC
IF &RC = 8 THEN EXIT
SET N = 1
DO WHILE (&N LE &LCNT)
 SET VARNAME = LINE&N
 SET CONTENTS = &&&VARNAME
 AOEXEC VGET VAR(&CONTENTS) POOL(SHARED) SSID(RE61)
 SET CONTENTS =&&&CONTENTS
 SET END1 = &LENGTH(&CONTENTS)
 SET COUNT = &SUBSTR(1:6,&CONTENTS)
 SET NOD = &SUBSTR(7:&END1,&CONTENTS)
 WRITE TERMINAL: &NOD RETRIES: &COUNT
 SET N = &N + 1
END
AOEXEC VDEL VAR(RETRY*) POOL(SHARED) SSID(RE61)
BMC Software, Inc., Confidential and Proprietary Information

9-58 MAINVIEW AutoOPERATOR Advanced Automation Guide

AOEXEC VPUT
AOEXEC VPUT

This command copies one or more variables from the EXECs function pool
into one of the AutoOPERATOR pools.

The following table describes the parameters.

Return codes are listed in the following table.

Command Parameters

AOEXEC VPUT [POOL(SHARED|PROFILE)]
SS | SSID(subsystem identifier)
[TGTSS(target subsystem identifier)]
VAR(var1....var2....var3...varn)

Parameter Function Notes

POOL The pool in which the designated
variables reside

One of the following pools:
• SHARED
• PROFILE
SHARED is the default.

SS | SSID SS | SSID() specifies the subsystem
identifier of a local SS.

Required keyword.

TGTSS If the TGTSS() keyword is specified, the
subsystem specified by the SS | SSID()
keyword is considered a router and the
actual function is executed on the
subsystem specified by TGTSS(). If
TGTSS() is not specified, this is the
subsystem where the requested
function is executed.

Optional keyword.
It must be in the same sysplex as the
BBI-SS specified with the SSID()
keyword, and both systems must have
the same XCFGROUP specified in the
BBPARM BBISSPxx.

VAR The name of one or more variables Each variable name can be up to 32
characters. The maximum length of the
combined variable values is 252 bytes.
Variables beginning with the character Q
are reserved for system variables and
should not be modified.

Value Description

-1 When the TGTSS() keyword is used, specifies that either the request timed out or the
target system was shut down in the middle of a request.

0 Command was executed successfully.

4 Variable did not previously exist in the designated pool.

12 Q-type variable was specified and cannot be copied with VPUT.

16 Invalid syntax used.

20 Variable name is invalid.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-59

AOEXEC VPUT
Examples

This section contains examples using the AOEXEC VPUT command
statement. A brief discussion follows each example.

Example 1

REXX EXEC example:

"AOEXEC VPUT VAR(ABENDS ABENDCOUNT ABENDREASON) POOL(SHARED) SSID(RE61)"

CLIST EXEC example:

AOEXEC VPUT VAR(ABENDS ABENDCOUNT ABENDREASON) POOL(SHARED) SSID(RE61

This example command saves the current value of ABENDS, ABENDCOUNT,
and ABENDREASON in the SHARED pool.

24 Variable name was not specified.

32 No XCF connection exists between the subsystem specified with the SS | SSID()
keyword and the subsystem specified using the TGTSS() keyword. The target subsystem
is most likely not active or not in the same sysplex as originating subsystem.

36 The subsystem specified using the SS | SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible versions of AOAnywhere exist.

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.

56 The BBI-SS PAS is not an AutoOPERATOR. If this BBI-PAS is meant to be an
AutoOPERATOR, ensure that the BBKEYS member contains valid AutoOPERATOR
keys and product=AAO is specified in BBISSP00.

Value Description
BMC Software, Inc., Confidential and Proprietary Information

9-60 MAINVIEW AutoOPERATOR Advanced Automation Guide

AOEXEC VPUT
Example 2

REXX EXEC example:

"AOEXEC VPUT VAR(ABENDS) POOL(PROFILE) SSID(RE61)"

CLIST EXEC example:

AOEXEC VPUT VAR(ABENDS) POOL(PROFILE) SSID(RE61

This example command saves the current value of ABENDS in the PROFILE
pool.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-61

AOEXEC VDELL
AOEXEC VDELL

This command deletes one or more long variables from one of the
AutoOPERATOR variable pools.

Note: This variable operation only supports a subset of the functions
available for the short variables. It ONLY affects and searches for
long variables. If a short variable (created with VPUT instead of
VPUTL) with the specified name exists, it is ignored.

The following table describes the parameters.

Note: This command does not affect variables that have already been
retrieved from one of the pools.

Command Parameters

AOEXEC VDELL [POOL(SHARED|PROFILE)]
VAR(var1....var2....var3...varn)
SS | SSID(subsystem identifier)
[TGTSS(target subsystem identifier)]

Parameter Function Notes

POOL The pool in which the designated
variables reside

One of the following pools:
• SHARED
• PROFILE
SHARED is the default.

VAR The name of one or more variables Required parameter.
Each variable name can be up to 32
characters. Maximum parameter length
is 252.
Variables beginning with the character
Q are reserved for system variables
and cannot be modified.

SS | SSID SS | SSID() specifies the subsystem
identifier of a local SS.

Required keyword.

TGTSS If the TGTSS() keyword is specified, the
subsystem specified by the SS | SSID()
keyword is considered a router and the
actual function is executed on the
subsystem specified by TGTSS(). If
TGTSS() is not specified, this is the
subsystem where the requested
function is executed.

Optional keyword.
It must be in the same sysplex as the
BBI-SS specified with the SSID()
keyword, and both systems must have
the same XCFGROUP specified in the
BBPARM BBISSPxx.
BMC Software, Inc., Confidential and Proprietary Information

9-62 MAINVIEW AutoOPERATOR Advanced Automation Guide

AOEXEC VDELL
Return codes are listed in the following table.

Example

The PROFILE pool is searched for a long variable with the name of X. If
found, it is deleted.

REXX EXEC example:

"AOEXEC VDELL VAR(X) POOL(PROFILE) SSID(RE61)"

CLIST EXEC example:

AOEXEC VDELL VAR(X) POOL(PROFILE) SSID(RE61)

Value Description

-1 When the TGTSS() keyword is used, specifies that either the request timed out or the
target system was shut down in the middle of a request.

0 The variable existed in the target pool and has been deleted.

8 No long variable with this name has been found in the target pool.

12 An attempt was made to delete a read-only variable (for example, Q-type variable was
specified which cannot be deleted with VDELL).

16 Invalid syntax used.

24 Variable name not specified.

32 No XCF connection exists between the subsystem specified with the SS | SSID()
keyword and the subsystem specified using the TGTSS() keyword. The target
subsystem is most likely not active or not in the same sysplex as originating
subsystem.

36 The subsystem specified using the SS | SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible versions of AOAnywhere exist.

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.

56 The BBI-SS PAS is not an AutoOPERATOR. If this BBI-PAS is meant to be an
AutoOPERATOR, ensure that the BBKEYS member contains valid AutoOPERATOR
keys and product=AAO is specified in BBISSP00.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-63

AOEXEC VGETL
AOEXEC VGETL

This command copies one or more long variables from one of the
AutoOPERATOR pools into the TSO pool.

Note: This variable operation supports only a subset of the functions
available for the short variables. It ONLY affects and searches for
long variables. If a short variable (created with VPUT instead of
VPUTL) with the specified name exists, it is ignored.

The following table describes the parameters.

Return codes are listed in the following table.

Command Parameters

AOEXEC VGETL [POOL(SHARED|PROFILE)]
VAR(var1....var2....var3...varn)
SS | SSID(subsystem identifier)
[TGTSS(target subsystem identifier)]

Parameter Function Notes

POOL The pool in which the designated
variables reside

One of the following pools:
• SHARED
• PROFILE
SHARED is the default.

VAR The name of one or more variables Required parameter.
Each variable name can be up to 30
characters.

SS | SSID SS | SSID() specifies the subsystem
identifier of a local SS.

Required keyword.

TGTSS If the TGTSS() keyword is specified, the
subsystem specified by the SS | SSID()
keyword is considered a router and the
actual function is executed on the
subsystem specified by TGTSS(). If
TGTSS() is not specified, this is the
subsystem where the requested function
is executed.

Optional keyword.
It must be in the same sysplex as the
BBI-SS specified with the SSID()
keyword, and both systems must have
the same XCFGROUP specified in the
BBPARM BBISSPxx.

Value Description

-1 When the TGTSS() keyword is used, specifies that either the request timed out or the
target system was shut down in the middle of a request.

0 The variable existed in the target pool and has been retrieved.

12 Variable name not specified.

16 Invalid syntax used.
BMC Software, Inc., Confidential and Proprietary Information

9-64 MAINVIEW AutoOPERATOR Advanced Automation Guide

AOEXEC VGETL
Examples

The PROFILE pool is searched for a long variable with the name of X. If
found, it is placed into the TSO pool and assigned to the variable Y.

REXX EXEC example:

"AOEXEC VGETL VAR(X) POOL(PROFILE) SSID(RE61)"
Y=X

CLIST EXEC example:

AOEXEC VGETL VAR(X) POOL(PROFILE) SSID(RE61)
SET Y=X

32 No XCF connection exists between the subsystem specified with the SS | SSID()
keyword and the subsystem specified using the TGTSS() keyword. The target subsystem
is most likely not active or not in the same sysplex as originating subsystem.

36 The subsystem specified using the SS | SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible versions of AOAnywhere exist.

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.

56 The BBI-SS PAS is not an AutoOPERATOR. If this BBI-PAS is meant to be an
AutoOPERATOR, ensure that the BBKEYS member contains valid AutoOPERATOR
keys and product=AAO is specified in BBISSP00.

Value Description
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-65

AOEXEC VLSTL
AOEXEC VLSTL

This command retrieves a long variable from the specified pool and places it
into the TSO pool.

Note: This variable operation supports only a subset of the functions
available for the short variables. It ONLY affects and searches for
long variables. If a short variable (created with VPUT instead of
VPUTL) with the specified name exists, it is ignored.

The following table describes the parameters.

Command Parameters

AOEXEC VLSTL [POOL(SHARED|PROFILE)]
VAR(var)
SS | SSID(subsystem identifier)
[TGTSS(target subsystem identifier)]

Parameter Function Notes

POOL The pool in which the designated
variables reside

One of the following pools:
• SHARED
• PROFILE
SHARED is the default.

VAR The name of one variable Required parameter.
Only one variable can specified and the
name must be enclosed in parentheses.
Each variable name can be up to 30
characters.
The variable name can be a pattern
(A+B*)
where the following wildcards are
supported:
+ (plus sign)
Matches any one character.
* (asterisk)
Matches zero to any number of
characters.

SS | SSID SS | SSID() specifies the subsystem
identifier of a local SS.

Required keyword.

TGTSS If the TGTSS() keyword is specified, the
subsystem specified by the SS | SSID()
keyword is considered a router and the
actual function is executed on the
subsystem specified by TGTSS(). If
TGTSS() is not specified, this is the
subsystem where the requested function
is executed.

Optional keyword.
It must be in the same sysplex as the
BBI-SS specified with the SSID()
keyword, and both systems must have
the same XCFGROUP specified in the
BBPARM BBISSPxx.
BMC Software, Inc., Confidential and Proprietary Information

9-66 MAINVIEW AutoOPERATOR Advanced Automation Guide

AOEXEC VLSTL
Return codes are listed in the following table.

Value Description

-1 When the TGTSS() keyword is used, specifies that either the request timed out or the
target system was shut down in the middle of a request.

0 At least one variable has been found.

16 Invalid syntax used.

20 Variable name not specified.

32 No XCF connection exists between the subsystem specified with the SS | SSID()
keyword and the subsystem specified using the TGTSS() keyword. The target subsystem
is most likely not active or not in the same sysplex as originating subsystem.

36 The subsystem specified using the SS | SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible versions of AOAnywhere exist.

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.

56 The BBI-SS PAS is not an AutoOPERATOR. If this BBI-PAS is meant to be an
AutoOPERATOR, ensure that the BBKEYS member contains valid AutoOPERATOR
keys and product=AAO is specified in BBISSP00.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-67

AOEXEC VLSTL
Example

This EXEC lists all long variables in the SHARED pool and writes their
names to the terminal.

REXX EXEC example:

/* REXX */
"AOEXEC VLSTL VAR(*) POOL(SHARED) SSID(RE61)"
say lcnt
do i=1 to lcnt
 name = value(’line’i)
 say name
end

CLIST EXEC example:

PROC 0
AOEXEC VLSTL VAR(*) POOL(SHARED) SSID(RE61)
WRITE &LCNT
SET I = 1
DO WHILE &I LE &LCNT
 SET NAME = &&&STR(LINE)&I
 WRITE &NAME
 SET I=&I+1
END
BMC Software, Inc., Confidential and Proprietary Information

9-68 MAINVIEW AutoOPERATOR Advanced Automation Guide

AOEXEC VPUTL
AOEXEC VPUTL

This command creates a or sets a long variable from a variable in the TSO
pool.

Note: This variable operation supports only a subset of the functions
available for the short variables. For example, no target system
functionality is provided. It ONLY affects and searches for long
variables. If a short variable (created with VPUT instead of VPUTL)
with the specified name exists, it is ignored.

The following table describes the parameters.

Return codes are listed in the following table.

Command Parameters

AOEXEC VPUTL [POOL(SHARED|PROFILE)]
VAR(var1....var2....var3...varn)
SS | SSID(subsystem identifier)
[TGTSS(target subsystem identifier)]

Parameter Function Notes

POOL The pool in which the designated
variables reside

One of the following pools:
• SHARED
• PROFILE
SHARED is the default.

VAR The name of one or more variables Required parameter.
Each variable name can be up to 30
characters.
Variables beginning with the character
Q are reserved for system variables
and cannot be modified.

SS | SSID SS | SSID() specifies the subsystem
identifier of a local SS.

Required keyword.

TGTSS If the TGTSS() keyword is specified, the
subsystem specified by the SS | SSID()
keyword is considered a router and the
actual function is executed on the
subsystem specified by TGTSS(). If
TGTSS() is not specified, this is the
subsystem where the requested
function is executed.

Optional keyword.
It must be in the same sysplex as the
BBI-SS specified with the SSID()
keyword, and both systems must have
the same XCFGROUP specified in the
BBPARM BBISSPxx.

Value Description

-1 When the TGTSS() keyword is used, specifies that either the request timed out or the
target system was shut down in the middle of a request.

0 The variable existed in the target pool and has been overwritten.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 9 Performing Automation Using AOAnywhere 9-69

AOEXEC VPUTL
Examples

This example saves the variable A to the SHARED pool. Note that the
variable can be shorter than 255 characters.

REXX EXEC example:

"AOEXEC VPUTL VAR(A) POOL(SHARED) SSID(RE61)"

CLIST EXEC example:

SET A=&STR(This is a test)
AOEXEC VPUTL VAR(A) POOL(SHARED) SSID(RE61)

4 The variable did not exist in the pool and has been created.

8 An error occurred during operation. Possible out-of-space condition for the PROFILE
pool.

12 An attempt was made to set a read-only variable (for example, Q-type variable was
specified which cannot be set with VPUT).

16 Invalid syntax used.

20 Variable pool not found. BIVARS not allocated.

24 Variable name not specified.

32 No XCF connection exists between the subsystem specified with the SS | SSID()
keyword and the subsystem specified using the TGTSS() keyword.cannot be found The
target subsystem is most likely not active or not in the same sysplex as originating
subsystem.

36 The subsystem specified using the SS | SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible versions of AOAnywhere exist.

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.

56 The BBI-SS PAS is not an AutoOPERATOR. If this BBI-PAS is meant to be an
AutoOPERATOR, ensure that the BBKEYS member contains valid AutoOPERATOR
keys and product=AAO is specified in BBISSP00.

Value Description
BMC Software, Inc., Confidential and Proprietary Information

9-70 MAINVIEW AutoOPERATOR Advanced Automation Guide

38
Chapter 10 Accessing Array Data with
AutoOPERATOR EXECs

This chapter describes how to use IMFEXEC ARRAY commands to access
data collected in arrays.

Overview

This document outlines IMFEXEC ARRAY|ARY commands that enable you
to access data from two-dimensional variable arrays. Arrays bear some
resemblance to ISPF tables in the way they can be scanned, sorted,
positioned and are backed by disk space.

When Are Arrays Useful

An EXEC often has to deal with many instances of the same data type for
example: a number of unit addresses, TSO/E user names, job names, and so
on. Often these data types are part of a record type. In addition to a job name,
a job also has a jobstep name, a start time, elapsed CPU time, EXCPs and
any amount of additional information.

These data fields can be manipulated using REXX stem variables but only for
a single column or field in a record. TSO/E CLIST EXECs cannot handle this
type of data at all. When dealing with multiple fields, you might use several
REXX stem variables with the same index but many inefficient operations
can result when swapping records or assigning them to a third record. Instead
of referring to a single record, REXX stem variables force you to deal with
fields only, never considering them as related items.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 10 Accessing Array Data with AutoOPERATOR EXECs 10-1

Overview
Furthermore, scanning these records for particular contents or sorting and
creating specific subsets of information becomes cumbersome and resource
intensive.

This is where arrays come in: arrays represent data in row-column format
where data items are kept together in rows or records. Instead of
manipulating this data manually, certain operations may be performed against
an array as an entirety, such as sorting it based upon the contents of a column.

To process an array you create a reference to a specific row (also called a
record) and retrieve the entire row into REXX variables. This operation
potentially sets a great number of variables all at once. A row is always
treated as one unit and the individual fields will never lose synchronization
(which might occur when using individual REXX stem variables).

Other advantages to arrays include

• Rows can be filtered so that only those rows whose columns meet certain
criteria are visible

• Rows can be sorted with one command

• Arrays can be shared among multiple EXECs and saved to permanent
storage (DASD)

As a debugging aid, a sample Exec (DUMPARY) that writes the contents of
an Array to the BBI journal is included in the BBSAMP library. You can
invoke this EXEC from a BBI command line by passing to it, the name of the
Array and the number of rows and columns to be displayed, for example:

%DUMPARY ARRAY(array) ROWS(50) COLS(10)

where array is the name of an array saved on disk, and 50 rows with 10
columns in each row will be displayed. Additionally, you can invoke
DUMPARY from within your own EXEC by specifying one of the following
commands:

IMFEXEC SELECT EXEC(DUMPARY ARRAY(array) ROWS(n) COLS(n) CON(N)) WAIT(YES)
or
call DUMPARY 'ARRAY(array) ROWS(n) COLS(n) CON(N)’
BMC Software, Inc., Confidential and Proprietary Information

10-2 MAINVIEW AutoOPERATOR Advanced Automation Guide

Overview
where array is the name of an array currently accessed by your EXEC.
ARRAY is the only required parameter. All parameters can be abbreviated
for convenience. The parameter CON(N) is used when your EXEC already
has a connection to the array. For more information about abbreviations and
examples of how to invoke the DUMPARY EXEC, invoke it from the BBI
journal command line, passing to it, the text ’help’. Then read the output in
the BBI journal. For example, specify:

%DUMPARY HELP

Note: If you do not specify a value for ROWS() or COLS(), the entire
array will be written to the journal. Be sure that either the BBSAMP
library is in your SYSPROC concatenation or copy the DUMPARY
EXEC from BBSAMP to another library concatenated to SYSPROC.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 10 Accessing Array Data with AutoOPERATOR EXECs 10-3

IMFEXEC ARRAY Commands
IMFEXEC ARRAY Commands

The following table lists the IMFEXEC ARRAY commands you can use to
access information in arrays and the page where you can find more
information.

General Coding Conventions

The following sections briefly describe the coding conventions for using the
IMFEXEC ARRAY | ARY command statements.

Note: Every command described in this chapter is prefixed by the literal
ARRAY | ARY to avoid naming conflicts with existing IMFEXEC
constructs. ARY is a valid abbreviation.

For example:

IMFEXEC ARRAY|ARY command [parameters]

Command Page Function

CONNECT 10-6 Establishes a logical connection between one or more EXECs and an array.

CREATE 10-9 Defines a new array by providing definitions of its logical characteristics.

DELETE 10-11 Deletes a row from an array.

DISC 10-13 Terminates a logical connection between one or more EXECs and an array.

FIND 10-15 Locates a particular row conforming to a set of criteria.

GET 10-18 Transfers the current array row into local variables.

INFO 10-20 Provides information about an array.

INSERT 10-23 Inserts a new row into an array.

LIST 10-25 Provides information about saved or disconnected arrays (when kept).

PUT 10-27 Sets the current array row from local variables.

SAVE 10-29 Checkpoints the contents of an array to disk.

SET 10-31 Transfers an array into REXX TSO/E variables.

SETVIEW 10-33 Limits array access to rows matching certain criteria.

SORT 10-36 Sorts an array according to one or more criteria.
BMC Software, Inc., Confidential and Proprietary Information

10-4 MAINVIEW AutoOPERATOR Advanced Automation Guide

IMFEXEC ARRAY Commands
Using Variable Names

Variable names are limited to 31 characters in length. The first character of
the variable must be alphanumeric or one of the following special characters:

• $

• @

• #

Reading Condition Codes

Every command returns a condition code in the variable IMFCC in the
TSO/E pool. Refer to Chapter 4, “Using Variables in REXX EXECs” for
more information about pools.

Each IMFEXEC command statement description includes a table describing
the parameters for the command. The table uses the following format:

The numbers in this table correspond to the following descriptions:

1 A short parameter identifier. If the parameter has uppercase letters,
this identifier must be coded exactly as shown.

If parts of the identifier are shown in bold, this parameter can be
abbreviated, using the bold letters.

Positional parameters are not associated with a specific identifier. In
these cases, this column contains an alias that describes the parameter.

2 The function of the parameter.

3 Notes about the parameter. Typically, these notes describe any
length, value, range, or string limitations.

Parameter Function Notes

1 2 3
BMC Software, Inc., Confidential and Proprietary Information

Chapter 10 Accessing Array Data with AutoOPERATOR EXECs 10-5

ARRAY CONNECT
ARRAY CONNECT

This command establishes a logical connection between one or more EXECs
and an array.

The following table describes the parameters.

When retrieving an array from disc, the current position is at the very
beginning of the array. Neither a View nor a Sort specification will exist.
When reconnecting to a kept array position, Sort and View criteria will be
exactly as left off.

Command Parameters

ARRAY|ARY CONNECT name
[UPDATE|READ]
[TOKEN()]

Parameter Function Notes

name The name of the array as established
during array creation

1-31 characters alphanumeric
This parameter is required.

UPDATE|READ Array access definition UPDATE is the default value.
Multiple read accesses by separate
threads to an array are possible.
However, UPDATE requires exclusive
access.

TOKEN Array token returned by DISC KEEP When not specified, the array is
retrieved from DASD. When specified,
only disconnected arrays are eligible.
BMC Software, Inc., Confidential and Proprietary Information

10-6 MAINVIEW AutoOPERATOR Advanced Automation Guide

ARRAY CONNECT
Condition codes are listed in the following table.

Example

The EXEC attempts to establish a connection to the array named
DASDSTATS that it assumes has been disconnected. If this attempt fails, a
disc copy is loaded.

REXX EXEC example:

"IMFEXEC ARRAY CONNECT DASDSTATS TOKEN("arytoken")"
if imfcc <> 0 then "IMFEXEC ARRAY CONNECT DASDSTATS READ"

CLIST EXEC example:

IMFEXEC ARRAY CONNECT DASDSTATS TOKEN(&ARYTOKEN)
IF &IMFCC NE 0 THEN IMFEXEC ARRAY CONNECT DASDSTATS READ

Note: After invoking the ARRAY CONNECT command, you can call the
debugging EXEC, DUMPARY, that was first described in the section
entitled “When Are Arrays Useful” on page 10-1. By adding one of
the following statements following the ARRAY CONNECT
command,

Value Description

0 Command was executed successfully.

8 Array not found or error reading from disc / cannot create temp copy.

16 Syntax error.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 10 Accessing Array Data with AutoOPERATOR EXECs 10-7

ARRAY CONNECT
IMFEXEC SELECT EXEC(DUMPARY ARRAY(array) ROWS(n) COLS(n) CON(N)) WAIT(YES)

or

CALL DUMPARY ’ARRAY(array) ROWS(n) COLS(n) CON(N)’

where array is the name of the array returned by ARRAY CONNECT
to your EXEC, you can write the contents of the array to the BBI
journal.

Note that if you do not specify a value for ROWS() or COLS(), the
entire array will be written to the journal.
BMC Software, Inc., Confidential and Proprietary Information

10-8 MAINVIEW AutoOPERATOR Advanced Automation Guide

ARRAY CREATE
ARRAY CREATE

This command defines a new array to AutoOPERATOR.

The following table describes the parameters.

After successful execution of the command the array will be in UPDATE
access. It is possible to redefine arrays that currently exist and to overwrite
them when saving. The format of the array definition in the indicated
variables is as follows:

• Column name (1-255 chars, TSO/E conforming)

• Column width (1-32767, numeric)

• Format (must be C currently)

• User data pertaining to this field (1-32767 chars, no restrictions, optional)

Individual fields are separated by one or more spaces.

Command Parameters

ARRAY|ARY CREATE name
STEM(stem name)
INITIAL()
[INC()]

Parameter Function Notes

name The name of the new array to define 1-31 characters alphanumeric

STEM Variable root name of a set of variables
containing the array definition

The format is identical to the format
above. Under REXX, true stem variables
will be referenced whereas under TSO/E
a numeric is appended to the name.
The low index is assumed to be 1. The
definition continues until either a null or
undefined variable is encountered.

INITIAL Initial size in rows of the array 1-32767 numeric

INC Increment to be used when extending
the array

1-32767 numeric
BMC Software, Inc., Confidential and Proprietary Information

Chapter 10 Accessing Array Data with AutoOPERATOR EXECs 10-9

ARRAY CREATE
Condition codes are listed in the following table.

Example

This EXEC defines a new array with 3 columns unit: VOL and STAT. It does
so by defining 3 variables with the contents of the definition. Although not
absolutely necessary in this example, be sure the succeeding variable is set to
null and the definition processor invoked.

The array definition is then saved.

REXX EXEC examples:

array.1=’UNIT 3 C’
array.2=’VOL 6 C’
array.3=’STAT 8 C’
array.4=’’
"IMFEXEC ARRAY CREATE DASDSTATS STEM(ARRAY) INITIAL(500) INC(50)"
"IMFEXEC ARRAY DISC DASDSTATS SAVE"

CLIST EXEC examples:

SET ARRAY1=&STR(UNIT 3 C)
SET ARRAY2=&STR(VOL 6 C)
SET ARRAY3=&STR(STAT 8 C)
SET ARRAY4=&STR()
IMFEXEC ARRAY CREATE DASDSTATS STEM(ARRAY) INITIAL(500) INC(50)
IMFEXEC ARRAY DISC DASDSTATS SAVE

Value Description

0 Command was executed successfully.

8 Invalid or incomplete array definition.

16 Syntax error.
BMC Software, Inc., Confidential and Proprietary Information

10-10 MAINVIEW AutoOPERATOR Advanced Automation Guide

ARRAY DELETE
ARRAY DELETE

This command deletes the current row from the array.

The following table describes the parameters.

Condition codes are listed in the following table.

Command Parameters

ARRAY|ARY DELETE name

Parameter Function Notes

name The name of the array as established
during array creation

1- to 31-characters alphanumeric.

Value Description

0 Command was executed successfully

4 Array is empty

8 Array is not found

12 Array is not in UPDATE access

16 Syntax error
BMC Software, Inc., Confidential and Proprietary Information

Chapter 10 Accessing Array Data with AutoOPERATOR EXECs 10-11

ARRAY DELETE
Example

This EXEC deletes all rows in an array beginning with those rows where
variable VOL is greater than or equal to the string BAB.

"IMFEXEC ARRAY CONNECT DASDSTATS"
"IMFEXEC ARRAY FIND DASDSTATS CRITERIA(’VOL,,,>=, ’’BAB’’’) ROW(1)"
do while imfcc=0
 "IMFEXEC ARRAY DELETE DASDSTATS"
 "IMFEXEC ARRAY FIND DASDSTATS CRITERIA(’VOL,,,>=, ’’BAB’’’) ROW(1)"
end

CLIST EXEC examples:

IMFEXEC ARRAY FIND DASDSTATS CRITERIA('VOL,,,>=,''BAB''') ROW(1)
DO WHILE &IMFCC=0
 IMFEXEC ARRAY DELETE DASDSTATS
 IMFEXEC ARRAY FIND DASDSTATS
 CRITERIA('VOL,,,>=,''BAB''') ROW(1)
END
BMC Software, Inc., Confidential and Proprietary Information

10-12 MAINVIEW AutoOPERATOR Advanced Automation Guide

ARRAY DISC
ARRAY DISC

This command terminates a logical connection with an array.

The following table describes the parameters.

The following table describes the TSO/E variables returned from DISC
(when KEEP is specified as the ACTION).

Condition codes are listed in the following table.

Command Parameters

ARRAY|ARY DISC name
[ACTION(SAVE|NOSAVE|DELETE|KEEP)]

Parameter Function Notes

name The name of the array as established
during array creation

1- to 31-characters alphanumeric.

ACTION Action to take upon termination One of the following values:
SAVE
Saves all updates since the last save to
disk and saves the cursor position.
NOSAVE
Discards all changes since last save
DELETE
Discards all changes and removes array
definition

KEEP
Retain array as-is in memory for future
reference. See the following table for
more information.

TSO/E Variables Returned from DISC

NAME Contents Length/Format Notes

ARYTOKEN Token to be used to
reconnect to the array

15/Character Properties determined by
internal design

Value Description

0 Command was executed successfully.

8 Failure to save array not found (never connected or created).

16 Syntax error.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 10 Accessing Array Data with AutoOPERATOR EXECs 10-13

ARRAY DISC
Example

This EXEC attempts to establish a connection with an array named
DASDSTATS. If the array cannot be found it terminates with a message and
a return code of 8. Otherwise it reads the first row from the array and then
disconnects from it with the default action setting of NOSAVE.

REXX EXEC example:

"IMFEXEC ARRAY CONNECT DASDSTATS"
if imfcc <> 0 then do
 "IMFEXEC MSG ’***** FATAL ERROR *****’"
 "IMFEXEC EXIT CODE(8)"
 exit
end
"IMFEXEC ARRAY FIND DASDSTATS ROW(1)"
"IMFEXEC ARRAY GET DASDSTATS"
"IMFEXEC ARRAY DISC DASDSTATS"

CLIST EXEC example:

IMFEXEC ARRAY CONNECT DASDSTATS
IF &IMFCC NE 0 THEN DO
 IMFEXEC MSG '***** FATAL ERROR *****'
 IMFEXEC EXIT CODE(8)
 EXIT
END
IMFEXEC ARRAY FIND DASDSTATS ROW(1)
IMFEXEC ARRAY GET DASDSTATS
IMFEXEC ARRAY DISC DASDSTATS
BMC Software, Inc., Confidential and Proprietary Information

10-14 MAINVIEW AutoOPERATOR Advanced Automation Guide

ARRAY FIND
ARRAY FIND

This command positions an array’s CURRENT row pointer at the first row
meeting specified criteria.

The following table describes the parameters

Any number of criteria may be specified, connected by the Boolean operators
AND and OR. Entries may be of one of the following two formats:

• Boolean operator (AND, OR), except for first criterion.

• Column name, 1-255 characters

• Starting position, default is 1

• Length used for comparison, default width of column+1 - starting
position

• Comparison operator, one of the following: LT, LE, EQ, GE, GT, NE, <,
< =, =, > =, >, < >, ^ =

Or

• Boolean operator (AND, OR), except for first criterion

• Column name, 1-255 characters

• Starting position, default is 1

• Length used for comparison, default width of column+1 - starting
position

Command Parameters

ARRAY|ARY FIND name
[ROW()]
[CRITERIA()]

Parameter Function Notes

name The name of the array as established
during array creation

1- to 31-characters alphanumeric.

ROW Starting row for scan The default is the current row
Numeric, the first element of an array is
indexed by 1.

CRITERIA Criteria to which the row must conform See the comments below the table.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 10 Accessing Array Data with AutoOPERATOR EXECs 10-15

ARRAY FIND
• Comparison operator, one of the following: LT, LE, EQ, GE, GT, NE, <,
<=, =, >=, >, < >, ^=

• Literals are enclosed in quotation marks

The following rules also apply:

• When both fields contain numerics (except leading and trailing blanks), a
numerical comparison is performed. Both numbers will always be treated
as unsigned integers.

• When a comparison with a literal is requested, a pattern comparison is
performed (for example, wildcards such as * and + may be used).

• When two columns with different lengths are compared, a comparison
with the length of the shorter of the two is done.

Condition codes are listed in the following table.

Value Description

0 Command was successfully executed.

4 Criteria parsing error.

8 Array not found.

12 Row specification past array extension or 0.

16 Syntax error.
BMC Software, Inc., Confidential and Proprietary Information

10-16 MAINVIEW AutoOPERATOR Advanced Automation Guide

ARRAY FIND
Example

This EXEC connects to the array user ID that contains information about user
IDs and accounts that are associated with them. The EXEC then finds all user
IDs belonging to account 3911 and prints them in the BBI-SS log.

Note: The CRITERIA parameters must be separated by a comma (even the
operands, AND and OR). Additionally, the parameter statement must
begin and end with a single quotation mark. To accept default values,
use a comma with no entry.

REXX EXEC example:

"IMFEXEC ARRAY CONNECT USERID"
"IMFEXEC ARRAY FIND USERID
CRITERIA(’ACCT,,,=,’’3911’’,OR,STAT,,,=,’’ACTIVE’’’) ROW(1)"
do while imfcc=0
 "IMFEXEC ARRAY INFO USERID"
 "IMFEXEC ARRAY GET USERID"
 "IMFEXEC MSG "userid
"IMFEXEC ARRAY FIND USERID CRITERIA(’ACCT,,,=,’’3911’’’) ROW("arypos+1")"
end

CLIST EXEC example:

IMFEXEC ARRAY CONNECT USERID
IMFEXEC ARRAY FIND USERID
 CRITERIA(’ACCT,,,=,’’3911’’,OR,STAT,,,=,’’ACTIVE’’’) ROW(1)
DO WHILE &IMFCC=0
 IMFEXEC ARRAY INFO USERID
 IMFEXEC ARRAY GET USERID
 IMFEXEC MSG &USERID
 IMFEXEC ARRAY FIND USERID CRITERIA('ACCT,,,=,''3911''') ROW(&ARYPOS+1)
END
BMC Software, Inc., Confidential and Proprietary Information

Chapter 10 Accessing Array Data with AutoOPERATOR EXECs 10-17

ARRAY GET
ARRAY GET

This command identifies the view to be used for accessing data.

The following table describes the parameters.

Condition codes are listed in the following table.

Command Parameters

ARRAY|ARY GET name
[TRIM|NOTRIM]
[SKIP|NOSKIP]

Parameter Function Notes

name The name of the array as established
during array creation

1- to 31-characters alphanumeric.

TRIM Defines whether leading and trailing
blanks are removed (trimmed)

The default is TRIM which means blanks
are removed.

SKIP Advances the current row pointer by 1
after retrieving the contents of the row

Possible values are SKIP and NOSKIP.
NOSKIP is the default.

Value Description

0 Command was successfully executed.

4 Array is empty / no matching rows for SETVIEW.

8 Array not found.

16 Syntax error.

20 If SKIP was specified (or defaulted to) and the last row of the table was read, a return
code of 20 will be returned.
BMC Software, Inc., Confidential and Proprietary Information

10-18 MAINVIEW AutoOPERATOR Advanced Automation Guide

ARRAY GET
Example

This EXEC locates the row containing the definition for volume BAB301 in
the array named DASDSTATS. It then retrieves the current status of this
volume and writes it to the log.

REXX EXEC example:

"IMFEXEC ARRAY CONNECT DASDSTATS"
"IMFEXEC ARRAY FIND DASDSTATS ROW(1) CRITERIA(’VOL,,,=,’’BAB301’’’)"
"IMFEXEC ARRAY GET DASDSTATS"
"IMFEXEC MSG VOL BAB301 Status: "stat

CLIST EXEC example:

IMFEXEC ARRAY CONNECT DASDSTATS
IMFEXEC ARRAY FIND DASDSTATS ROW(1) CRITERIA('VOL,,,=,''B
B301''')
IMFEXEC ARRAY GET DASDSTATS
IMFEXEC MSG VOL BAB301 Status: &STAT
BMC Software, Inc., Confidential and Proprietary Information

Chapter 10 Accessing Array Data with AutoOPERATOR EXECs 10-19

ARRAY INFO
ARRAY INFO

This command identifies the view to be used for accessing data.

The following table describes the parameters.

The following table describes the TSO/E variables returned from INFO.

Command Parameters

ARRAY|ARY INFO name

Parameter Function Notes

name The name of the array as established
during array creation

1- to 31-characters alphanumeric.

TSO/E Variables Returned from INFO

NAME Contents Length/Format Example

ARYROWS Number of active rows in
the array

0-32767 numeric

ARYFRAME Number of total rows
currently allocated for the
array

1-32767 numeric Corresponds to the initial()
specification during array
creation but may change as the
array is extended

ARYINC Increment used when
extending the array

1-32767 numeric Corresponds to the inc()
specification during array
creation

ARYSTOR Total number of bytes
occupied by the array itself
and all associated control
blocks

numeric This includes the array itself,
the array descriptor block,
lookaside tables as well as sort
and filter descriptor blocks.

ARYLROWS Number of rows matching
the current view

0-32767 numeric

ARYCOLS Number of columns of the
array

1-32767 numeric

ARYPOS Current position within the
array

1-32767 numeric

ARYSORT Specifies whether sort
criteria have been attached
to the array

YES or NO

ARYFILTER Specifies whether a view
has been attached to the
array

YES or NO
BMC Software, Inc., Confidential and Proprietary Information

10-20 MAINVIEW AutoOPERATOR Advanced Automation Guide

ARRAY INFO
Condition codes are listed in the following table.

Example

This EXEC connects to the array named DASDSTAT and establishes a view
of the array which makes only those rows eligible where column STAT has
the contents of ACTIVE. It then sorts the resulting array by the contents of
column VOL and produces a list of all matching rows.

REXX EXEC example:

"IMFEXEC ARRAY CONNECT DASDSTAT"
"IMFEXEC ARRAY SETVIEW DASDSTAT CRITERIA(’STAT,,,=,’’ACTIVE’’’)"
"IMFEXEC ARRAY SORT DASDSTAT CRITERIA(’VOL,,,A’)"
"IMFEXEC ARRAY INFO DASDSTAT"
"IMFEXEC MSG The following volumes are active:"
do I =1 to arylrows
 "IMFEXEC ARRAY GET DASDSTAT"
 "IMFEXEC ARRAY MSG "vol
end

ARYCOLN.n The name of all columns of
the array

1-255, character ARYCOLN.1, ARYCOLN.2 etc.

ARYCOLW.n The width of the indicated
column

1-32767 numeric ARYCOLW.1, ARYCOLW.2
etc.

Value Description

0 Command was successfully executed.

8 Array not found.

16 Syntax error.

TSO/E Variables Returned from INFO
BMC Software, Inc., Confidential and Proprietary Information

Chapter 10 Accessing Array Data with AutoOPERATOR EXECs 10-21

ARRAY INFO
CLIST EXEC example:

IMFEXEC ARRAY CONNECT DASDSTAT
IMFEXEC ARRAY SETVIEW DASDSTAT CRITERIA(’STAT,,,=,’’ACTIVE’’’)
IMFEXEC ARRAY SORT DASDSTAT CRITERIA(’VOL,,,A’)
SET I=1
IMFEXEC ARRAY INFO DASDSTAT
IMFEXEC MSG The following volumes are active:
DO WHILE &I LE &ARYLROWS
 IMFEXEC ARRAY FIND DASDSTAT ROW(&I)
 IMFEXEC ARRAY GET DASDSTAT
 IMFEXEC ARRAY MSG &VOL
 SET I=&I+1
END
BMC Software, Inc., Confidential and Proprietary Information

10-22 MAINVIEW AutoOPERATOR Advanced Automation Guide

ARRAY INSERT
ARRAY INSERT

This command identifies the view to be used for accessing data.

The following table describes the parameters.

Condition codes are listed in the following table.

Command Parameters

ARRAY|ARY INSERT name
[POSITION(HERE|FIRST|LAST)]

Parameter Function Notes

name The name of the array as established
during array creation

1- to 31-characters alphanumeric.

POSITION Position in the array where row will be
inserted

Could be one of the following values:
HERE
At the current position
FIRST
At the top of the array (element 1)
LAST
As the last element of the element

If the array is ordered, the current
position will always be determined by the
sort criteria and field contents and this
specification will be ignored.

Value Description

0 Command was successfully executed.

8 Array not found.

12 Array not in UPDATE access.

16 Syntax error.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 10 Accessing Array Data with AutoOPERATOR EXECs 10-23

ARRAY INSERT
Example

This EXEC inserts a new row into the array referenced by the token
contained in the variable DASDSTATS. It then sets the value of this row and
checkpoints the contents of the array to permanent storage.

REXX EXEC example:

unit=3E0
vol=BAB301
stat=ACTIVE
"IMFEXEC ARRAY INSERT DASDSTATS"
"IMFEXEC ARRAY SAVE DASDSTATS"

CLIST EXEC example:

SET UNIT=3E0
SET VOL=BAB301
SET STAT=ACTIVE
IMFEXEC ARRAY INSERT DASDSTATS
IMFEXEC ARRAY SAVE DASDSTATS
BMC Software, Inc., Confidential and Proprietary Information

10-24 MAINVIEW AutoOPERATOR Advanced Automation Guide

ARRAY LIST
ARRAY LIST

This command provides information about arrays in this BBI-SS PAS.

The following table describes the parameters.

The following table describes the TSO/E variables returned from LIST.

Condition codes are listed in the following table.

Command Parameters

ARRAY|ARY LIST [KEPT]

Parameter Function Notes

KEPT Provide information about disconnected
arrays in storage (DISC with KEEP)

TSO/E Variables Returned from LIST

NAME Contents Length/Format

ARYNAME.x Name of the array 1-31 characters

ARYTOKN.x Token of the array if disconnected 15 characters

ARYCOUNT Count of arrays found

Value Description

0 Command was successfully executed.

16 Syntax error.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 10 Accessing Array Data with AutoOPERATOR EXECs 10-25

ARRAY LIST
Example

This EXEC locates all disconnected arrays. It subsequently deletes all of
them.

REXX EXEC example:

"IMFEXEC ARRAY LIST KEPT"
do j=1 to arycount
 "IMFEXEC ARRAY CONNECT "aryname.j" TOKEN("arytokn.j")"
 "IMFEXEC ARRAY DISC "aryname.j" NOSAVE"
end

CLIST EXEC example:

IMFEXEC ARRAY LIST KEPT
SET I=1
DO WHILE &I LE ARYCOUNT
 IMFEXEC ARRAY CONNECT &SYSNSUB(2,&&ARYNAME&I) +
 TOKEN(&SYSNSUB(2,&&ARYTOKN&I))
 IMFEXEC ARRAY DISC &SYSNSUB(2,&&ARYNAME&I) NOSAVE
 SET I=&I+1
END
BMC Software, Inc., Confidential and Proprietary Information

10-26 MAINVIEW AutoOPERATOR Advanced Automation Guide

ARRAY PUT
ARRAY PUT

This command sets values of the current row of an array.

The following table describes the parameters.

Condition codes are listed in the following table.

Example

This EXEC locates the row containing the definition for volume BAB301 in
the array DASDSTATS. It sets the current status of this volume.

REXX EXEC example:

"IMFEXEC ARRAY CONNECT DASDSTATS UPDATE"
"IMFEXEC ARRAY FIND DASDSTATS ROW(1) CRITERIA(’VOL,,,=,’’BAB301’’’)"
"IMFEXEC ARRAY GET DASDSTATS"
stat=ACTIVE
"IMFEXEC ARRAY PUT DASDSTATS"
"IMFEXEC ARRAY DISC DASDSTATS SAVE"

Command Parameters

ARRAY|ARY PUT name

Parameter Function Notes

name The name of the array as established
during array creation

1- to 31-characters alphanumeric.

Value Description

0 Command was successfully executed

8 Invalid array token

12 Array not in UPDATE access

16 Syntax error
BMC Software, Inc., Confidential and Proprietary Information

Chapter 10 Accessing Array Data with AutoOPERATOR EXECs 10-27

ARRAY PUT
CLIST EXEC example:

IMFEXEC ARRAY CONNECT DASDSTATS UPDATE
IMFEXEC ARRAY FIND DASDSTATS ROW(1) CRITERIA(’VOL,,,=,’’BAB301’’’)
IMFEXEC ARRAY GET DASDSTATS
SET STAT=ACTIVE
IMFEXEC ARRAY PUT DASDSTATS
IMFEXEC ARRAY DISC DASDSTATS SAVE
BMC Software, Inc., Confidential and Proprietary Information

10-28 MAINVIEW AutoOPERATOR Advanced Automation Guide

ARRAY SAVE
ARRAY SAVE

This command checkpoints an AutoOPERATOR array. An array that was
connected with the PAGE keyword cannot be saved. Use DISC/CONNECT
for these arrays instead.

The following table describes the parameters.

Condition codes are listed in the following table.

Command Parameters

ARRAY|ARY SAVE name

Parameter Function Notes

name The name of the array as established
during array creation

1- to 31-characters alphanumeric.

Value Description

0 Command was successfully executed.

8 Array not found or I/O error writing to disk.

16 Syntax error.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 10 Accessing Array Data with AutoOPERATOR EXECs 10-29

ARRAY SAVE
Example

This EXEC inserts a new row into the array referenced by the token
contained in the variable DASDSTATS. It then sets the value of this row and
checkpoints the contents of the array to permanent storage.

REXX EXEC example:

unit=3E0
vol=BAB301
stat=ACTIVE
"IMFEXEC ARRAY INSERT DASDSTATS"
"IMFEXEC ARRAY SAVE DASDSTATS"

CLIST EXEC example:

IMFEXEC ARRAY CONNECT DASDSTAT
IMFEXEC ARRAY SET DASDSTAT
IMFEXEC ARRAY DISC DASDSTAT NOSAVE
IMFEXEC MSG &UNIT_1
BMC Software, Inc., Confidential and Proprietary Information

10-30 MAINVIEW AutoOPERATOR Advanced Automation Guide

ARRAY SET
ARRAY SET

This command transfers the entire contents of an array into REXX variables.

The following table describes the parameters.

This command takes all rows and columns and creates REXX variables from
them. Each variable name is identical to the column that it was derived from.
A period ‘.’ is then appended (effectively turning it into a stem variable) and
then a counter is added for the row that it was copied from.

For example: For a column of UNIT, TSO/E variables of the name UNIT.1 to
UNIT.xx are created.

This command functions properly only on column names that do not exceed
26 characters in length (since it appends .(_)xxxxx to the variable name). If
column names exceeding 26 characters in length are found, a return code of 8
is returned.

Condition codes are listed in the following table.

Command Parameters

ARRAY|ARY SET name
[TRIM|NOTRIM]

Parameter Function Notes

name The name of the array as established
during array creation

1- to 31-characters alphanumeric.

TRIM Defines whether leading and trailing
blanks are removed (trimmed)

The default is NOTRIM.

Value Description

0 Command was successfully executed.

4 Array is empty.

8 Array not found or column name wider than 26 characters was found.

16 Syntax error.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 10 Accessing Array Data with AutoOPERATOR EXECs 10-31

ARRAY SET
Example

This EXEC connects to the array DASDSTAT and sets all columns and rows
to their respective REXX variables. It then writes a message to the log
designating the contents of the ‘unit’ column of the first row.

REXX EXEC example:

“IMFEXEC ARRAY CONNECT DASDSTAT”
“IMFEXEC ARRAY SET DASDSTAT”
"IMFEXEC ARRAY DISC DASDSTAT NOSAVE"
"IMFEXEC MSG "unit.1

CLIST EXEC example:

IMFEXEC ARRAY CONNECT DASDSTAT
IMFEXEC ARRAY SETVIEW DASDSTAT
CRITERIA(’STAT,,,=,’’ACTIVE’’,OR,STAT,,,=,’’ACTIVE’’’)
IMFEXEC ARRAY SORT DASDSTAT CRITERIA(’VOL,,,A’)
SET I=1
IMFEXEC ARRAY INFO DASDSTAT
IMFEXEC MSG The following volumes are active:
DO WHILE &I LE &ARYLROWS
 IMFEXEC ARRAY GET DASDSTAT SKIP
 IMFEXEC ARRAY MSG &VOL
 SET I=&I+1
END
BMC Software, Inc., Confidential and Proprietary Information

10-32 MAINVIEW AutoOPERATOR Advanced Automation Guide

ARRAY SETVIEW
ARRAY SETVIEW

This command limits access to an array to those rows matching certain
criteria.

The following table describes the parameters.

Any number of criteria may be specified, connected by Boolean operators
AND and OR. Entries may be of one of the following two formats:

• Boolean operator (AND, OR), except for first criterion when not
specifying APPEND.

• Column name, 1-255 characters

• Starting position, default is 1

• Length used for comparison, default width of column+1 - starting
position

• Comparison operator, one of the following: LT, LE, EQ, GE,
GT,NE,<,<=,=,>=,>,<>,^=

• Column name, 1-255 characters

• Starting position, default is 1

Command Parameters

ARRAY|ARY SETVIEW name
[CRITERIA()]
[FUNCTION(DELETE|APPEND)]

Parameter Function Notes

name The name of the array as established
during array creation

1- to 31-characters alphanumeric.

CRITERIA Criteria to which that the row must
conform

See comments below this table

FUNCTION Indicator on how to treat specs One of the following values:
DELETE
Remove all filter criteria.
APPEND
Append this specification to any already
existing specifications.

Otherwise, create a new view with the
given criteria.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 10 Accessing Array Data with AutoOPERATOR EXECs 10-33

ARRAY SETVIEW
• Length used for comparison, default width of column+1 - starting
position

Or

• Boolean operator (AND, OR), except for first criterion

• Column name, 1-255 characters

• Starting position, default is 1

• Length used for comparison, default width of column+1 - starting
position

• Comparison operator, one of the following: LT, LE, EQ, GE,
GT,NE,<,<=,=,>=,>,<>,^=

• Literal enclosed in quotation marks

The following table describes the TSO/E variables returned from SETVIEW.

The following rules apply:

• When both fields contain numerics (except leading and trailing blanks), a
numerical comparison is performed. Both numbers will always be treated
as unsigned integers.

• When a comparison with a literal is requested, a pattern comparison is
performed (for example, wildcards such as * and + may be used).

• When two columns with different lengths are compared, a comparison
with the length of the shorter of the two is done.

Condition codes are listed in the following table.

TSO/E Variables Returned from SETVIEW

NAME Contents Length/Format Example

ARYLROWS Number of rows matching
the current view

0-32767 numeric

Value Description

0 Command was successfully executed.

8 Array not found.

12 Criteria parsing error.

16 Syntax error.
BMC Software, Inc., Confidential and Proprietary Information

10-34 MAINVIEW AutoOPERATOR Advanced Automation Guide

ARRAY SETVIEW
Example

This EXEC connects to the array DASDSTAT and establishes a view of the
array which makes only those rows eligible where column STAT has the
contents of ACTIVE. It then sorts the resulting array by the contents of
column VOL and produces a list of all matching rows.

REXX EXEC example:

“IMFEXEC ARRAY CONNECT DASDSTAT”
“IMFEXEC ARRAY SETVIEW DASDSTAT
CRITERIA(’STAT,,,=,’’ACTIVE’’,OR,STAT,,,=,’’ACTIVE’’’)”
“IMFEXEC ARRAY SORT DASDSTAT CRITERIA(’VOL,,,A’)”
“IMFEXEC ARRAY INFO DASDSTAT
“IMFEXEC MSG The following volumes are active:”
do i=1 to railways
 “IMFEXEC ARRAY GET DASDSTAT SKIP”
 “IMFEXEC ARRAY MSG “Val
end

CLIST EXEC example:

IMFEXEC ARRAY CONNECT DASDSTAT
IMFEXEC ARRAY SETVIEW DASDSTAT
CRITERIA(’STAT,,,=,’’ACTIVE’’,OR,STAT,,,=,’’ACTIVE’’’)
IMFEXEC ARRAY SORT DASDSTAT CRITERIA(’VOL,,,A’)
SET I=1
IMFEXEC ARRAY INFO DASDSTAT
IMFEXEC MSG The following volumes are active:
DO WHILE &I LE &ARYLROWS
 IMFEXEC ARRAY GET DASDSTAT SKIP
 IMFEXEC ARRAY MSG &VOL
 SET I=&I+1
END
BMC Software, Inc., Confidential and Proprietary Information

Chapter 10 Accessing Array Data with AutoOPERATOR EXECs 10-35

ARRAY SORT
ARRAY SORT

This command sorts an array according to user specifications. This command
is invalid for arrays that were connected using the PAGE keyword.

The following table describes the parameters.

After specifying a sort order for an array, the array will be kept sequenced
when further insert activity occurs. If high insert activity is expected, it is
advisable to remove ordering temporarily, insert all changes, and then
respecifiy the sort order. SORT and SETVIEW may be specified in
conjunction.

Command Parameters

ARRAY|ARY SORT name
[CRITERIA(colname,(START),(LENGTH),(ORDER))]
[DELETE]

Parameter Function Notes

name The name of the array as established
during array creation

1- to 31-characters alphanumeric.

CRITERIA Sort criteria to be used The contents of this parameter are:
colname,START,LENGTH,ORDER
where
colname
Name of the referenced column in the
array
START
Starting position for sort argument
(default is 1)
LENGTH
Length of comparison (default is length
of column)
ORDER
Ascending or descending

Multiple sort arguments may be supplied

DELETE Removes any array ordering Default is delete.
Removes any sequence binding
BMC Software, Inc., Confidential and Proprietary Information

10-36 MAINVIEW AutoOPERATOR Advanced Automation Guide

ARRAY SORT
Condition codes are listed in the following table.

Example

This EXEC connects to the array DASDSTATS and sorts by the columns
STAT and VOL in ascending order.

REXX EXEC example:

"IMFEXEC CONNECT DASDSTATS"
"ARRAY SORT MYTEST CRITERIA(’ROW1,,,A’)"

CLIST EXEC example:

IMFEXEC CONNECT DASDSTATS
ARRAY SORT MYTEST CRITERIA(’ROW1,,,A’)

Value Description

0 Command was successfully executed.

4 Criteria parsing error (invalid or missing criteria definition).

8 Array not found.

16 Syntax error.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 10 Accessing Array Data with AutoOPERATOR EXECs 10-37

ARRAY SORT
BMC Software, Inc., Confidential and Proprietary Information

10-38 MAINVIEW AutoOPERATOR Advanced Automation Guide

30
Chapter 11 Using the MAINVIEW API

This chapter describes how to use the MAINVIEW API. The MAINVIEW
API includes specific commands, functions and facilities that enable
MAINVIEW AutoOPERATOR users to access data available on the
MAINVIEW Databus with AutoOPERATOR EXECs.

Note that the use of this API requires that you are familiar with MAINVIEW
AutoOPERATOR IMFEXEC commands and MAINVIEW technology. The
API is a cross-platform product which enables you to access data from
MAINVIEW technology using AutoOPERATOR automation techniques.

BMC Software recommends that you have some knowledge about how to use
AutoOPERATOR EXECs to access array data. For information about this
facility, refer to Chapter 10, “Accessing Array Data with AutoOPERATOR
EXECs”.

Overview

The following discussions introduce the MAINVIEW API and describe how
to use it.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 11 Using the MAINVIEW API 11-1

Overview
What Is the MAINVIEW API

The MAINVIEW API provides for a one-way data exchange between
MAINVIEW-based products such as MAINVIEW for CICS, MAINVIEW
for OS/390, MAINVIEW for IMS (and others) and AutoOPERATOR REXX
or CLIST EXECs. Through the API, AutoOPERATOR EXECs can explicitly
request the data from a MAINVIEW product through an EXEC. The
MAINVIEW API allows AutoOPERATOR to gather data from the
MAINVIEW Databus to flow from any of the MAINVIEW products into
AutoOPERATOR.

AutoOPERATOR EXECs process the MAINVIEW data based on how a
MAINVIEW view looks during a MAINVIEW terminal session. This means
that you see the exact output in an EXEC for a view as you see when it is
displayed from a MAINVIEW terminal session.

Data from the MAINVIEW databus is shown in rows and columns (tabular
format) so AutoOPERATOR processes MAINVIEW data as an array. An
array is a table that consists of one or more columns that are given names. In
most instances, an array is processed one row at a time, retrieving the
contents of that row into TSO/E variables that are available to an EXEC.
There is a one-to-one relationship between the columns of a view and the
columns in the resulting array. Refer to “Customizing MAINVIEW Views
and Connecting BBI-SS PAS to a CAS” for more information about the
naming conventions for array columns.

Customizing MAINVIEW Views and Connecting BBI-SS
PAS to a CAS

Before AutoOPERATOR EXECs can access MAINVIEW data, you must
perform two tasks:

• Customize the MAINVIEW views so that the EXECs can successfully
retrieve the column names in variables.

• Connect the BBI-SS PAS to a CAS.

Customizing MAINVIEW Views

There is a relationship between the columns in a MAINVIEW view and the
column names of the corresponding array. The name of the first header line
of a column in a view is the name of the column of the generated array, and it
is also the name of the variable used when retrieving the row of an array (the
second header line is ignored).
BMC Software, Inc., Confidential and Proprietary Information

11-2 MAINVIEW AutoOPERATOR Advanced Automation Guide

Overview
While this naming convention is intuitive, it poses one major problem: many
header lines in MAINVIEW product views do not follow TSO/E variable
naming conventions. For example, if a column is titled% TOT CPU, this
cannot produce valid variable name because

• it begins with a percent sign (%)

• it contains blanks

The resulting array shows columns with these invalid names but you are still
able to retrieve the rows of a column. The array accepts these invalid names
and this allows for simpler debugging when problems arise. You can use the
IMFEXEC ARRAY INFO command to display the names of the columns of
an array and spot the invalid names.

To resolve these issues, in most cases you must customize a MAINVIEW
view to meet a specific need and then update the header lines. The column
headers are automatically translated to uppercase. Use the MV CUST facility
to create these views, which also enables you to eliminate columns of data
that your EXEC is not interested in (such as bar graphs).

Save the customized views so that they are available for later use. Refer to the
MAINVIEW Common Customization Guide and “MAINVIEW VIEW” on
page 11-19 for information about how MAINVIEW AutoOPERATOR
accesses views.

Understanding Tabular and Detail Views

The MAINVIEW API supports both tabular and detail views.

When you choose to see data from a detail view, only one row containing the
requested data is returned. When you choose to see data from a tabular view,
the data returned is exactly the same as the width specified by the view
customization. Header widths and data widths are independent from each
other and you can specify a different width for every column.

Detail views are returned in the same format as they are displayed in the
view. A detail view expands the widths of all columns in a row to match the
size of the largest row. For example, if you specify three items in one row
where one column is 8 characters wide, the second column is 12 characters
wide and the third column is 15 characters wide, the data on the screen is
aligned so that each item occupies a cell that is 15 characters wide.

The MAINVIEW API follows the same principle. Therefore, if you request
data through the API where a row in a detail view is set up as described
above, the result creates an array where each variable has a width of 15
characters instead of 3 variables of 8, 12 and 15 characters.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 11 Using the MAINVIEW API 11-3

Overview
Connecting a BBI-SS PAS to a CAS

The second requirement is to ensure your BBI-SS PAS is connected to a
CAS. Specify the ID of the CAS in the BBPARM member BBISSP00 with
the CASID= parameter.

When this is finished, you will see the message

CT3333I PAS ssid connected to CAS xxxx

during the startup of your AutoOPERATOR BBI-SS PAS where xxxx is the
name of the CAS you specified with the CASID= parameter.

If you do not see this message, you must determine the cause of the missing
connection before you can continue. One thing you can try is to establish a
MAINVIEW terminal session, connect with the PAS in question and to
invoke some views of the products. If you cannot see data, the products is
also unavailable to the MAINVIEW API.

Once the MAINVIEW views are created and stored and the BBI-SS PAS is
communicating with a CAS, you can proceed to writing AutoOPERATOR
EXECs.
BMC Software, Inc., Confidential and Proprietary Information

11-4 MAINVIEW AutoOPERATOR Advanced Automation Guide

Using the IMFEXEC MAINVIEW Commands
Using the IMFEXEC MAINVIEW Commands

The following sections provide information about the IMFEXEC
MAINVIEW commands and using them with specific parameters.

IMFEXEC MAINVIEW CONNECT

Use the IMFEXEC MAINVIEW CONNECT command to establish a
channel.

Channels are the equivalent of a terminal session that interacts with
MAINVIEW products. They are a simple abstraction of a terminal session:
they do not require you to log on to anything and they do not require any
specific definition; you must acquire one.

One advantage of channels is that you can have multiple channels just as if
you had set up any number of terminal sessions. Therefore, if your EXEC has
to address many different products or views, it is easy to set up more than one
channel.

The IMFEXEC MAINVIEW CONNECT command has two parameters:
Channel (a required parameter) and MSG (an optional parameter).

The Channel parameter is required to address a specific channel (because you
can have more than one) in all IMFEXEC MAINVIEW operations. You can
provide the name of a TSO/E variable that receives a token that uniquely
identifies the channel you are addressing. The contents of this variable is
used in later IMFEXEC MAINVIEW operations.

Use the MSG parameter to write any error messages to the BBI Journal.
During a MAINVIEW terminal sessions you might have experienced a
sequence of cascading error messages that explain why a specific operation
could not be executed. These exact same statements are turned to an EXEC
when an operation failed. By default these messages are added as variables
LINE.0 to LINE.xx. In a TSO/E CLIST, the messages are returned as
LINE_0 to LINE_xx.

While you can process these error messages programmatically, during
development of a new EXEC it may be useful to see them in the BBI Journal
without having to explicitly write them out which is what the MSG parameter
does. If specified, any error message associated with an operation using this
channel is written to the BBI Journal. When the EXEC reaches a production
stage, you can remove the MSG parameter to avoid cluttering the Journal.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 11 Using the MAINVIEW API 11-5

Using the IMFEXEC MAINVIEW Commands
In summary, a channel is a data transport vehicle requested with the
IMFEXEC MAINVIEW CONNECT command and identified by the contents
of a variable that you specific.

IMFEXEC MAINVIEW CONTEXT

After a channel is established, point the channel at a particular context with
the IMFEXEC MAINVIEW CONTEXT command. The only two parameters
absolutely required are the channel you are using and the product you would
like to request data from (refer to “MAINVIEW CONTEXT” on page 11-12
for more information). However you can use this command to point to a
specific target or server. By doing this you can use SSI views right out of
AutoOPERATOR without having to consolidate the results yourself.

If the target is currently unavailable, you can retry at a later point in time or,
you can code the WAIT parameter and give the API the opportunity to watch
for the availability of your context. If the WAIT times out, you are informed
and you can take other actions.

IMFEXEC MAINVIEW VIEW

Once you gain access to the product, you can access data from the view that
you are interested in (just as you would in a regular terminal session) with the
IMFEXEC MAINVIEW VIEW command. Refer to “MAINVIEW VIEW”
on page 11-19 for more information.

IMFEXEC MAINVIEW VIEW returns the view name and channel token.
The API validates that the view exists and reads its definition.

IMFEXEC MAINVIEW GETDATA

Use IMFEXEC MAINVIEW GETDATA to retrieve the actual data. Refer to
“MAINVIEW GETDATA” on page 11-14.

The two required parameters for this command are the channel name
(CHANNEL) and the name of an array (ARRAY). The array is built using
the column names you specify and it has as many rows as necessary to
accommodate all the data. Make sure the array does not already exist because
this command will not overwrite an existing array.

Another parameter that is required the first time you issue this command is
REFRESH. If you request data for the first time, you must specify this
keyword for data to be returned.
BMC Software, Inc., Confidential and Proprietary Information

11-6 MAINVIEW AutoOPERATOR Advanced Automation Guide

Using the IMFEXEC MAINVIEW Commands
Using the REFRESH parameter is very critical when you need to process
subsets of data from a large array. For certain views, a large amount of data
might be returned and you will want to process the data in subsets. In this
case you can use the parameters START and COUNT which allow you to
specify (in terms of rows) a subset of data from a view.

As you process these subsets of data, do not use the REFRESH parameter on
subsequent operations to ensure the data in the view is constant. When you
want fresh data to be retrieved, use the REFRESH parameter again.

If neither the START nor the COUNT parameters are specified, all of the
available data is returned.

When the data is available to you in the array, you can process it using
IMFEXEC ARRAY statements. Refer to Chapter 10, “Accessing Array Data
with AutoOPERATOR EXECs”.

Once you have gathered your data and no longer have a use for the channel, it
is good practice to release all resources with the IMFEXEC MAINVIEW
RELEASE command (“MAINVIEW RELEASE” on page 11-17). If your
EXEC immediately terminates after doing so you can skip the release step
because EXEC termination clean up releases the resources for you.

If you do not need the contents of the array anymore, disconnect from it.
Remember, arrays can be passed between EXECs, and as such, termination
cleanup keeps the array, just in case another EXEC needs it.

The following table lists the IMFEXEC MAINVIEW commands and the
page number for additional information.

Command Page Function

CONNECT 10 Request a new channel to be used in subsequent requests.

CONTEXT 12 Connect a channel with a specified context or target.

GETDATA 14 Return collected view data.

RELEASE 17 Release all resources associated with a channel.

TRACE 18 Turn TRACE information on or off.

VIEW 19 Identify the view to be used for accessing data.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 11 Using the MAINVIEW API 11-7

General Coding Conventions
General Coding Conventions

The following sections briefly describe the coding conventions for using the
IMFEXEC MAINVIEW commands.

Note: Every command described in this chapter is prefixed by the literal
MAINVIEW | MV to avoid naming conflicts with existing
IMFEXEC constructs. MV is a valid abbreviation.

Using Variable Names

Variable names are limited to 32 characters in length. The first character of
the variable must be alphanumeric or one of the following special characters:

• $

• @

• #

Reading Condition Codes

Every command returns a condition code in the variable IMFCC in the TSO
pool. Refer to Chapter 4, “Using Variables in REXX EXECs” for more
information about pools.

Each IMFEXEC command statement description includes a table describing
the parameters for the command. The table uses the following format:

Parameter Function Notes

1 2 3
BMC Software, Inc., Confidential and Proprietary Information

11-8 MAINVIEW AutoOPERATOR Advanced Automation Guide

General Coding Conventions
The numbers in this table correspond to the following descriptions:

1 A short parameter identifier. If the parameter has uppercase letters,
this identifier must be coded exactly as shown.

If parts of the identifier are shown in bold, this parameter can
be abbreviated, using the bold letters.

Positional parameters are not associated with a specific
identifier. In these cases, this column contains an alias that
describes the parameter.

2 The function of the parameter.

3 Notes about the parameter. Typically, these notes describe any
length, value, range, or string limitations.

Note: When you invoke a CLIST EXEC that has at least one keyword on
the PROC statement, you must invoke the EXEC using at least one
keyword.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 11 Using the MAINVIEW API 11-9

MAINVIEW CONNECT
MAINVIEW CONNECT

This command causes a new channel to be used in subsequent channel
requests. A channel must be connected before any MAINVIEW data can be
requested using the low-level API.

The following table describes the parameters.

Condition codes are listed in the following table.

Command Parameters

MAINVIEW|MV CONNECT Channel
[MSG | NOMSG]

Parameter Function Notes

Name of channel Variable name to receive the token that
identifies the connected channel.

1- to 32-characters alphanumeric.
This variable name is used by other
IMFEXEC MAINVIEW statements

Message option Controls the writing of exception
messages to the journal.

One of the following values:
MSG
Exception messages are written to the
journal.
NOMSG
No exception messages are written to
the journal (default).

Value Description

0 A new channel was successfully connected and may be referenced by the supplied
variable token.

8 A channel could not be acquired. This condition can occur when a BBI-SS PAS or CAS
has not been started. Otherwise, use MV TRACE to collect trace information and then
contact BMC Customer Support.

16 Syntax error detected during parsing:
• Invalid keywords
• Missing channel parameter

20 The maximum MAINVIEW session count has been exceeded. The request is failed. The
total number of sessions supported PER SS is 150. You might want to retry the request
after inserting an IMFEXEC WAIT().
BMC Software, Inc., Confidential and Proprietary Information

11-10 MAINVIEW AutoOPERATOR Advanced Automation Guide

MAINVIEW CONNECT
Example

This example shows an EXEC that requests a new channel to be used in
subsequent channel requests. The token for this channel is placed into the
variable JOBCHANNEL.

REXX EXEC example:

“IMFEXEC MAINVIEW CONNECT JOBCHANNEL”

CLIST EXEC example:

IMFEXEC MAINVIEW CONNECT JOBCHANNEL

All other examples in this chapter use the variable named JOBCHANNEL to
represent the token that identifies the connected channel.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 11 Using the MAINVIEW API 11-11

MAINVIEW CONTEXT
MAINVIEW CONTEXT

This command connects a channel with a specified context or target and
optionally waits for it to become available.

The following table describes the parameters.

Condition codes are listed in the following table.

Command Parameters

MAINVIEW|MV CONTEXT PRODUCT(product name)
TARGET(target identifier)
[SERVER(server name)]
[WAIT(n)]
CHANNEL(channelname)

Paramete
r Function Notes

PRODUCT Product to which a connection is to be
established.

One of the following products:
MVMVS: MAINVIEW for OS/390
CMF: CMF Monitor
MVCICS: MAINVIEW for CICS
MVVP: MAINVIEW VistaPoint
MVDB2: MAINVIEW for DB2
MVIMS: MAINVIEW for IMS
IPSM: MAINVIEW for IMSPlex
MVMQS: MAINVIEW for WebSphere MQ

TARGET Context or target to which a connection
is to be established.

1- to 8-characters alphanumeric.

SERVER Can be used in target mode to
distinguish between different products
that contain the same target name.

1- to 8-characters alphanumeric. The default is all
servers.

WAIT Number of minutes to wait until target
becomes available.

0 - 99999. The default is 0.
If WAIT is specified and a target is not available, a
connection is implicitly retried every 10 seconds.

CHANNEL Token that identifies a previously
connected channel.

1- to 32-characters alphanumeric.

Value Description

0 The product or target connection was successfully established. The channel is available
to retrieve data from the databus.

8 The connection could not be established.

12 The specified channel could not be located.

16 Syntax error detected or invalid channel token supplied.
BMC Software, Inc., Confidential and Proprietary Information

11-12 MAINVIEW AutoOPERATOR Advanced Automation Guide

MAINVIEW CONTEXT
Example

This example shows an EXEC that requests an immediate connection to
product MVMVS with a target of SJSB. The connection is to use the
previously connected channel whose token is contained in the variable
JOBCHANNEL.

REXX EXEC example:

“IMFEXEC MAINVIEW CONTEXT PRODUCT(MVMVS) TARGET(SJSB)
CHANNEL(“JOBCHANNEL”)”

CLIST EXEC example:

IMFEXEC MAINVIEW CONTEXT PRODUCT(MVMVS) TARGET(SJSB)
CHANNEL(&JOBCHANNEL)
BMC Software, Inc., Confidential and Proprietary Information

Chapter 11 Using the MAINVIEW API 11-13

MAINVIEW GETDATA
MAINVIEW GETDATA

This command returns some or all of the collected view data.

The following table describes the parameters.

Command Parameters

MAINVIEW|MV GETDATA ARRAY(arrayname)
[START(n)]
[COUNT(n)]
[REFRESH]
CHANNEL(channelname)

Parameter Function Notes

ARRAY Name of the array in which both the data
and the data definition is returned.

1- to 31-characters alphanumeric.
The specified array must not exist. An
existing array will not be overwritten.
All information about the returned data is
implicitly returned in the array.

START Starting row for the request. 1-99999 numeric. The default is row 1.
To request a subset of the data, specify
a START value and a COUNT value.

COUNT Number of rows of data to retrieve. 1-99999 numeric. The default is all rows.
To request a subset of the data, specify
a START value and a COUNT value.

REFRESH Specifies that the selector for this data
be restored.

The first request for data from a view in
a given channel requires REFRESH.
In addition:
• Always specify REFRESH on the first

call.
• When using START and COUNT and

you are traversing the result set, do
not specify REFRESH (because you
do not want the result set to change).

• When you want a new result set to be
obtained (which you always want to
unless you are in the situation above),
always specify RERESH.

Message option Controls the writing of exception
messages to the journal.

One of the following values:
MSG
Exception messages are written to the
journal.
NOMSG
No exception messages are written to
the journal (default).

CHANNEL Token that identifies a previously
connected channel.

1- to 32-characters alphanumeric.
BMC Software, Inc., Confidential and Proprietary Information

11-14 MAINVIEW AutoOPERATOR Advanced Automation Guide

MAINVIEW GETDATA
Condition codes are listed in the following table.

Example

This example shows an EXEC that retrieves data from a previously specified
view in the channel called DATACHANNEL. For all rows it prints the column
with the element name VOL to the AutoOPERATOR journal.

REXX EXEC example:

"IMFEXEC MAINVIEW GETDATA CHANNEL("DASDCHANNEL")
ARRAY(DASDSTAT) START(1) COUNT(20) REFRESH"
"IMFEXEC ARRAY INFO DASDSTAT"
"IMFEXEC MSG The following volumes are active:"
do i=1 to arylrows
 "IMFEXEC ARRAY GET DASDSTAT SKIP"
 "IMFEXEC ARRAY MSG "vol
end

Value Description

0 All of the requested data was successfully retrieved.

4 The specified array could not be built because it already exists.

8 The requested data could not be retrieved. Examine the accompanying error messages
for details. If NOMSG was specified on CONNECT, display the contents of LINE.xxxx.
This return code may also indicate that the START() keyword specified a value that was
higher than the number of available records (in which case no records can be returned).

12 The specified channel could not be found.

16 A syntax error was detected or invalid parameters were supplied.

20 An internal error was received.

24 The number of rows returned exceeds the maximum allowed (or 32767). When this
condition code is issued, 32767 rows of data is returned. After processing the returned
data, the user can redrive the IMFEXEC MV GETDATA using ROW(32768) to obtain
any additional rows. When redriving IMFEXEC MV GETDATA to obtain additional rows,
do not use REFRESH.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 11 Using the MAINVIEW API 11-15

MAINVIEW GETDATA
CLIST EXEC example:

IMFEXEC MAINVIEW GETDATA CHANNEL(&DASDCHANNEL)
ARRAY(DASDSTAT) START(1) COUNT(20) REFRESH
IMFEXEC ARRAY INFO DASDSTAT
IMFEXEC MSG The following volumes are active:
SET I=1
DO WHILE &I LE ARYLROWS
 IMFEXEC ARRAY GET DASDSTAT SKIP
 IMFEXEC ARRAY MSG &VOL
 SET I=&I+1
END
BMC Software, Inc., Confidential and Proprietary Information

11-16 MAINVIEW AutoOPERATOR Advanced Automation Guide

MAINVIEW RELEASE
MAINVIEW RELEASE

This command releases all resources associated with an API channel.

The following table describes the parameters.

Condition codes are listed in the following table.

Example

This example shows an EXEC that frees all resources associated with the
channel whose token is contained in the variable JOBCHANNEL. It then
discards any MAINVIEW data returned in the array called JOBDATA.

REXX EXEC example:

"IMFEXEC MAINVIEW RELEASE CHANNEL("JOBCHANNEL")"
"IMFEXEC ARRAY DISC JOBDATA NOSAVE"

CLIST EXEC example:

IMFEXEC MAINVIEW RELEASE CHANNEL(&JOBCHANNEL)
IMFEXEC ARRAY DISC JOBDATA NOSAVE

Command Parameters

MAINVIEW|MV RELEASE CHANNEL(channelname)

Parameter Function Notes

CHANNEL Token that identifies a previously
connected channel.

1- to 32-characters alphanumeric.

Value Description

0 The specified channel was successfully released.

8 An unspecified error occurred while releasing the channel.

12 The specified channel could not be found.

16 Syntax error detected or invalid parameters supplied.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 11 Using the MAINVIEW API 11-17

MAINVIEW TRACE
MAINVIEW TRACE

This command requests trace information to be written to the BBI Journal.
Trace information includes the name of the command, the return code, and
internal completion and reason codes. Use this command with the generated
output whenever contacting BMC Customer Support.

This command is independent of the MSG keyword on the CONNECT
statement.

The following table describes the parameters.

Condition codes are listed in the following table.

Example

This example shows an EXEC that requests that all further MAINVIEW API
requests be accompanied by trace information.

REXX EXEC example:

“IMFEXEC MAINVIEW TRACE ON”

CLIST EXEC example:

Command Parameters

MAINVIEW|MV TRACE ON | OFF

Parameter Function Notes

ON Turns MAINVIEW API tracing on. The ON or OFF parameter must be
specified with this command.
There is no default value.

OFF Turns MAINVIEW API tracing off. The ON or OFF parameter must be
specified with this command.
There is no default value.

Value Description

0 Tracing was successfully turned ON or OFF

16 Syntax error detected during parsing
BMC Software, Inc., Confidential and Proprietary Information

11-18 MAINVIEW AutoOPERATOR Advanced Automation Guide

MAINVIEW VIEW
IMFEXEC MAINVIEW TRACE ON

MAINVIEW VIEW

This command identifies the view to be used for accessing data.

The following table describes the parameters.

Command Parameters

MAINVIEW|MV VIEW NAME(viewname)
[STEM(stemname)]
[DD(ddname)]
[PARMS(parm1...parm2...parmn)]
CHANNEL(channelname)

Parameter Function Notes

NAME View name that describes the request. 1- to 8-characters alphanumeric.
VIEW is an alias for this parameter.

STEM Stem name of a set of REXX variables
containing the view definitions.

1- to 26-characters alphanumeric.
This parameter may be used to
dynamically specify view contents. A
root for a set of stem variables is
specified. The variable root.0 contains
the total count of stem variables. The
actual view is contained in the variables
root.1 through root.x. The syntax of the
specified view is identical to that of the
view normally found in the BBVDEF data
set.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 11 Using the MAINVIEW API 11-19

MAINVIEW VIEW
Condition codes are listed in the following table.

DD DD name to use to access the view from
the BBI-SS PAS.

1- to 8-characters alphanumeric.
Note that members that do not contain
<VIEW> and <BASE> statements as the
first two lines are ignored. However, the
view search continues with the next DD
in the view member search order.
The view member search order is as
follows:

1. It starts with the DD specified in the
DD parameter.

This DD must be allocated to the
MAINVIEW AutoOPERATOR PAS that
runs the EXEC that executes this
command. If this parameter is not
specified, the BBIPARM DD is used as
the default. Note that if the DD
parameter is specified, the BBIPARM is
not searched.

2. The next DD to be searched is the
DD BBVDEF, if it is allocated to the
MAINVIEW AutoOPERATOR PAS
that runs the EXEC.

3. The next DD to be searched is the
DD BBVDEF that is allocated to the
CAS.

For more information about BBVDEF,
refer to the MAINVIEW Common
Customization Guide.

PARMS View parameters as specified with the
view name on the command line or in a
hyper link.

1- to 80-characters alphanumeric.
Parameters in parentheses must be
enclosed in quotation marks.

CHANNEL Token that identifies a previously
connected channel.

1- to 32-characters alphanumeric.

Value Description

0 The view was successfully read and parsed. It is available for subsequent GETDATA
requests.

4 The specified view could not be read.

8 Bad stem variable specification. The specified variables could not be found.

12 The specified channel could not be found.

16 Syntax error detected or invalid parameters supplied.
BMC Software, Inc., Confidential and Proprietary Information

11-20 MAINVIEW AutoOPERATOR Advanced Automation Guide

MAINVIEW VIEW
Example

This example shows an EXEC that requests that view JOVER be read and
parsed. The view is read from the target BBI-SS PAS. The connection is to
use the previously connected channel whose token is contained in the
variable JOBCHANNEL.

REXX EXEC example:

"IMFEXEC MAINVIEW VIEW NAME(JOVER) CHANNEL("JOBCHANNEL")"

CLIST EXEC example:

IMFEXEC MAINVIEW VIEW NAME(JOVER) CHANNEL(&JOBCHANNEL)

The following example demonstrates how the STEM() parameter may be
used to dynamically specify a view:

/* REXX */
"ALLOC F(VIEW) DA(’BBI26.BAORAE.BBVDEF(PLEX1)’) SHR REUSE"
address MVS
"EXECIO * DISKR VIEW (STEM DEFS. FINIS)"
address IMFEXEC
"MV CONNECT MYCHANNEL MSG"
"MV CONTEXT PRODUCT(PLEXMGR) CHANNEL("MYCHANNEL")"
"MV VIEW STEM(DEFS) CHANNEL("MYCHANNEL") VIEW(PLEX1)"
"MV GETDATA CHANNEL("MYCHANNEL") ARRAY(RESULTS) REFRESH"
"MV RELEASE CHANNEL("MYCHANNEL")"
"ARRAY DISC RESULTS NOSAVE"

BMC Software, Inc., Confidential and Proprietary Information

Chapter 11 Using the MAINVIEW API 11-21

Sample Program
Sample Program

The sample program in this section illustrates the use of the MAINVIEW
API for a complete application.

REXX EXEC example:

/* rexx */
/* */
/***/
/* This EXEC demonstrates the use of the MAINVIEW to AO API. */
/* It assumes that a customized View -JTEST- exists in a dataset allocated */
/* under the BBVDEF DD statement. */
/* The reason for this is that the names of the columns for the generated */
/* AO array are taken from the HEADER1 columns of the actual BBI-3 View. */
/* AO arrays are processed by taking a row of such an array and introducing */
/* the contents of a row into variable names of the same name. Most BBI-3 */
/* do not lend themselves very well to that purpose since they contain */
/* characters (or even multiple words) that do not translate to individual */
/* variable names (they are invalid variable names). */
/* One of the options would have been to make some arbitrary translations. */
/* However, since the user subsequently needs to know the names of such */
/* variables to process them, this would not have been a useful exercise. */
/* It is easy for a user to determine whether invalid variable names exist */
/* by querying the array itself and displaying the column names (which ARE */
/* allowed to be set to names that do not translate to variables). This EXEC */
/* demonstrates this approach amongst other things. */
/* */
/* All failures of the MV API commands rely on the API’s cleanup. */
/* */
/* Note: All MV API commands begin with the prefix -IMFEXEC MV- followed */
/* by the desired AOI function. */
/***/

/***/
/* The following command turns on MV tracing, a function that causes */
/* the name of the executed command, the name of the EXEC, return code from */
/* the command as well as API completion and reason code to be automatically */
/* displayed, without having to hand-code it. We may or may not document this*/
/* function to the user. */
/***/

"IMFEXEC MV TRACE ON"

/***/
/* Now we obtain a channel. An AO equivalent (but not identical to) the BBI-3*/
/* token is supposed to be returned in the variable -MYCHANNEL- */
/***/
BMC Software, Inc., Confidential and Proprietary Information

11-22 MAINVIEW AutoOPERATOR Advanced Automation Guide

Sample Program
"IMFEXEC MV CONNECT MYCHANNEL MSG"
"IMFEXEC MSG ’MVAPICMP: "mvapicmp" MVAPIRSN: "mvapirsn"’"
if rc <> 0 then do
 "IMFEXEC MSG ’MV CONNECT failed’"
 exit
end

/***/
/* Establish a connection to the product -MVMVS-, wait a maximum of one */
/* minute (we automatically retry every minute without the user having to */
/* specify this number) and use the previously acquired channel (as tokenized*/
/* in the variable -MYCHANNEL-). */
/***/

"IMFEXEC MV CONTEXT PRODUCT(MVMVS) WAIT(1) CHANNEL("MYCHANNEL")"
if rc <> 0 then do
 "IMFEXEC MSG ’MV CONTEXT failed’"
 exit
end

/***/
/* Set the proper View -JTEST- using out channel. */
/* Please note that unlike the underlying assembler API no information about */
/* the element map is returned. This is deferred until the actual GETDATA */
/* and then presented in the array structure. */
/***/

"IMFEXEC MV VIEW VIEW(JTEST) CHANNEL("MYCHANNEL")"
if rc <> 0 then do
 "IMFEXEC MSG ’MV VIEW failed’"
 exit
end

/***/
/* The data is retrieved. */
/* Any array with the name -RESULTS- is created. The data is refreshed. */
/***/

"IMFEXEC MV GETDATA CHANNEL("MYCHANNEL") ARRAY(RESULTS) REFRESH"
if rc <> 0 then do
 "IMFEXEC MSG ’MV GETDATA failed’"
 exit
end

/***/
/* At this point we want to find out what the names of the columns and their */
/* properties are. */
/* */
/* Note: In the process headers/variable names have been translated to */
/* uppercase. */
/***/

/***/
/* We request all pertinent information about the array -RESULTS- and format.*/
/***/
BMC Software, Inc., Confidential and Proprietary Information

Chapter 11 Using the MAINVIEW API 11-23

Sample Program
"IMFEXEC ARRAY INFO RESULTS"
if rc <> 0 then do
 "IMFEXEC MSG ’ARRAY INFO failed’"
 exit
end

/***/
/* This is where we format the information. It has been returned by the */
/* previous command in the variables beginning with the literal -ARY-. */
/***/

"IMFEXEC MSG Number of rows: "arylrows
"IMFEXEC MSG Total storage in use for data: "arystor
"IMFEXEC MSG Number of columns returned: "arycols
"IMFEXEC MSG Detailed data information follows"
"IMFEXEC MSG ---"
"IMFEXEC MSG Width Name"
"IMFEXEC MSG ---"

/***/
/* Here we build one line per column that displays its name and width. */
/* A format of character is assumed. */
/***/

do i=1 to arycols
 "IMFEXEC MSG "left(arycolw.i,6)||arycoln.i
end

col1=arycoln.1

/***/
/* At this point we display the complete contents of the array (the returned */
/* BBI-3 data). This is, of course, not advised for very large amounts of */
/* data. */
/***/

"IMFEXEC MSG Displaying complete ARRAY contents"

/***/
/* Build a header line that properly names each column and is aligned. */
/***/

line=""
do j=1 to arycols
 line=line||left(arycoln.j,arycolw.j+1)
end

"IMFEXEC MSG ---"
"IMFEXEC MSG "line
"IMFEXEC MSG ---"

/***/
/* Sort by jobname column */
/***/

"IMFEXEC ARRAY SORT RESULTS CRITERIA(’JOBNAME,,,A’)"
BMC Software, Inc., Confidential and Proprietary Information

11-24 MAINVIEW AutoOPERATOR Advanced Automation Guide

Sample Program
/***/
/* Now retrieve each row, build a line from all column contents and show it. */
/***/

do i=1 to arylrows
 "IMFEXEC ARRAY FIND RESULTS row("i")"
 "IMFEXEC ARRAY GET "RESULTS
 line=""

 do j=1 to arycols
 line=line||left(value(‘arycoln’j),arycolw.j)||' '
 end

 "IMFEXEC MSG "line
end

/***/
/* Clean the channel up. */
/***/

"IMFEXEC MV RELEASE CHANNEL("MYCHANNEL")"
if rc <> 0 then do
 "IMFEXEC MSG 'MV RELEASE failed'"
 exit
end

/***/
/* We also get rid of the results array. By default the array could be picked*/
/* up at a later point by another EXEC and reprocessed. */
/***/

"IMFEXEC ARRAY DISC RESULTS NOSAVE"

/***/
/* If you are testing with this EXEC and for some reason, it does not work */
/* and this last statement is not executed, the next GETDATA will fail, */
/* indicating the array already exists. The quick remedy is to run */
/* the EXEC -DELARY- that will delete all disconnected (KEPT) arrays. */
/***/
BMC Software, Inc., Confidential and Proprietary Information

Chapter 11 Using the MAINVIEW API 11-25

Sample Program
CLIST EXEC example:

PROC 0
/* */
/***/
/* This EXEC demonstrates the use of the MAINVIEW to AO API. */
/* It assumes that a customized View -JTEST- exists in a data set allocated */
/* under the BBVDEF DD statement. */
/* The reason for this is that the names of the columns for the generated */
/* AO array are taken from the HEADER1 columns of the actual BBI-3 View. */
/* AO arrays are processed by taking a row of such an array and introducing */
/* the contents of a row into variable names of the same name. Most views */
/* do not lend themselves very well to that purpose since they contain */
/* characters (or even multiple words) that do not translate to individual */
/* variable names (they are invalid variable names). */
/* One of the options would have been to make some arbitrary translations. */
/* However, since the user subsequently needs to know the names of such */
/* variables to process them, this would not have been a useful exercise. */
/* It is easy for a user to determine whether invalid variable names exist */
/* by querying the array itself and displaying the column names (which ARE */
/* allowed to be set to names that do not translate to variables). This EXEC */
/* demonstrates this approach amongst other things. */
/* */
/* All failures of the MV API commands rely on the API’s cleanup. */
/* */
/* Note: All MV API commands begin with the prefix -IMFEXEC MV- followed */
/* by the desired AOI function. */
/***/

/***/
/* The following command turns on MV tracing, a function that causes */
/* the name of the executed command, the name of the EXEC, return code from */
/* the command as well as API completion and reason code to be automatically */
/* displayed, without having to hand-code it. We may or may not document this*/
/* function to the user. */
/***/

IMFEXEC MV TRACE ON

/***/
/* Now we obtain a channel. An AO equivalent (but not identical to) the BBI-3*/
/* token is supposed to be returned in the variable -MYCHANNEL- */
/***/

IMFEXEC MV CONNECT MYCHANNEL MSG
IMFEXEC MSG ’MVAPICMP: &mvapicmp MVAPIRSN: &mvapirsn’
IF &LASTCC NE 0 THEN DO
 IMFEXEC MSG ’MV CONNECT failed’
 EXIT
END

/***/
/* Establish a connection to the product -MVMVS-, wait a maximum of one */
BMC Software, Inc., Confidential and Proprietary Information

11-26 MAINVIEW AutoOPERATOR Advanced Automation Guide

Sample Program
/* minute (we automatically retry every minute without the user having to */
/* specify this number) and use the previously acquired channel (as tokenized*/
/* in the variable -MYCHANNEL-). */
/***/

IMFEXEC MV CONTEXT PRODUCT(MVMVS) WAIT(1) CHANNEL(&MYCHANNEL)
IF &LASTCC NE 0 THEN DO
 IMFEXEC MSG ’MV CONTEXT failed’
 EXIT
END

/***/
/* Set the proper View -JTEST- using out channel. */
/* Please note that unlike the underlying assembler API no information about */
/* the element map is returned. This is deferred until the actual GETDATA */
/* and then presented in the array structure. */
/***/

IMFEXEC MV VIEW VIEW(JTEST) CHANNEL(&MYCHANNEL)
IF &LASTCC NE 0 THEN DO
 IMFEXEC MSG ’MV VIEW failed’
 EXIT
END

/***/
/* The data is retrieved */

/* Any array with the name -RESULTS- is created. The data is refreshed. */
/***/

IMFEXEC MV GETDATA CHANNEL(&MYCHANNEL) ARRAY(RESULTS) REFRESH
IF &LASTCC NE 0 THEN DO
 IMFEXEC MSG ’MV GETDATA failed’
 EXIT
END

/***/
/* At this point we want to find out what the names of the columns and their */
/* properties are. */
/* */
/* Note: In the process headers/variable names have been translated to */
/* uppe&lastccase. */
/***/

/***/
/* We request all pertinent information about the array -RESULTS- and format.*/
/***/

IMFEXEC ARRAY INFO RESULTS
IF &LASTCC NE 0 THEN DO
 IMFEXEC MSG ’ARRAY INFO failed’
 EXIT
END

/***/
/* This is where we format the information. It has been returned by the */
BMC Software, Inc., Confidential and Proprietary Information

Chapter 11 Using the MAINVIEW API 11-27

Sample Program
/* previous command in the variables beginning with the literal -ARY-. */
/***/

IMFEXEC MSG Number of rows: &ARYLROWS
IMFEXEC MSG Total storage in use for data: &ARYSTOR
IMFEXEC MSG Number of columns returned: &ARYCOLS
IMFEXEC MSG Detailed data information follows
IMFEXEC MSG &STR(---)
IMFEXEC MSG Width Name
IMFEXEC MSG &STR(---)

/***/
/* Here we build one line per column that displays its name and width. */
/* A format of character is assumed. */
/***/
SET BLANK=&STR()
IMFEXEC MSG &SYSCLENGTH(&STR(&BLANK))
SET I=1
DO WHILE &I LE &ARYCOLS
 SET A=&&&STR(ARYCOLW)&I
 SET PAD=6-&SYSCLENGTH(&A)
 SET A=&STR(&A&SUBSTR(1:&PAD,&BLANK))
 SET B=&&&STR(ARYCOLN)&I
 IMFEXEC MSG &STR(&A)&B
 SET I=&I+1
END

/***/
/* At this point we display the complete contents of the array (the returned */
/* BBI-3 data). This is, of course, not advised for very large amounts of */
/* data. */
/***/

IMFEXEC MSG Displaying complete ARRAY contents

/***/
/* Build a header line that properly names each column and is aligned. */
/***/

SET LINE=&STR()
SET J=1
DO WHILE &J LE &ARYCOLS
 SET A=&&&STR(ARYCOLW)&J
 SET B=&&&STR(ARYCOLN)&J
 SET PAD=&A+1-&SYSCLENGTH(&B)
 SET B=&STR(&B&SUBSTR(1:&PAD,&BLANK))
 SET LINE=&LINE&STR(&B)
 SET J=&J+1
END

IMFEXEC MSG &STR(---)
IMFEXEC MSG &LINE
IMFEXEC MSG &STR(---)

/***/
/* Now retrieve each row, build a line from all column contents and show it. */
/***/
BMC Software, Inc., Confidential and Proprietary Information

11-28 MAINVIEW AutoOPERATOR Advanced Automation Guide

Sample Program
SET I=&I+1
DO WHILE &I LE &ARYLROWS
 IMFEXEC ARRAY FIND RESULTS ROW(&I)
 IMFEXEC ARRAY GET RESULTS
 SET LINE=&STR()
 SET J=1
 DO WHILE(&J LE &ARYCOLS)
 SET A=&&&STR(ARYCOLW)&J
 SET B=&&&STR(ARYCOLN)&J
 SET B=&&&B
 SET PAD=&A+1-&SYSCLENGTH(&STR(&B))
 SET B=&STR(&B&SUBSTR(1:&PAD,&BLANK))
 SET LINE=&STR(&LINE)&STR(&B)
 SET J=&J+1
 END
 IMFEXEC MSG &LINE
 SET I=&I+1
END

/***/
/* Clean the channel up. */
/***/

IMFEXEC MV RELEASE CHANNEL(&MYCHANNEL)
IF &lastcc NE 0 THEN DO
 IMFEXEC MSG ’MV RELEASE failed’
 EXIT
END

/***/
/* We also get rid of the results array. By default the array could be picked*/
/* up at a later point by another EXEC and reprocessed. */
/***/

IMFEXEC ARRAY DISC RESULTS NOSAVE

/***/
/* If you are testing with this EXEC and for some reason, it does not work */
/* and this last statement is not executed, the next GETDATA will fail, */
/* indicating the array already exists. The quick remedy is to run */
/* the EXEC -DELARY- that will delete all disconnected (KEPT) arrays. */
/***/
BMC Software, Inc., Confidential and Proprietary Information

Chapter 11 Using the MAINVIEW API 11-29

Sample Program
BMC Software, Inc., Confidential and Proprietary Information

11-30 MAINVIEW AutoOPERATOR Advanced Automation Guide

212
Chapter 12 Using the IMFEXEC
Statements

IMFEXEC statements provide automation services not available in a REXX
EXEC or with a TSO command procedure. The command syntax is the
keyword IMFEXEC, followed by the command and any necessary
parameters; for example:

"IMFEXEC command [parameters]"

CLIST EXEC example:

IMFEXEC command [parameters]

Valid delimiters for the command are blank characters. IMFEXEC keywords
must be coded in uppercase.

Table 12-1 IMFEXEC Statements (Part 1 of 3)

Command Page Function

ALERT 12-6 Create an exception message in the ALERTS Application

BKPT 12-32 Used when testing EXECs with the EXEC Testing facility; allows you
to set a breakpoint anywhere in the EXEC, including in native REXX
code

CHAP 12-33 Used to change the dispatching priority of the EXEC

CICS 12-34 Issue a command to a CICS target

CICSTRAN 12-84 Invoke a transaction in a CICS target

CMD 12-85 Issue a CICS, IMS, MVS, JES, or BBI command.

CNTL 12-103 Control listing of EXEC commands in the Journal Log

DOM 12-105 Delete an outstanding WTO or WTOR

EXIT 12-107 Terminate the EXEC and set return code
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-1

HB 12-108 Change the number of seconds between heartbeat messages that
are sent from a BBI-SS PAS to the ELAN workstation.

IMFC 12-109 Issue IMF analyzer or monitor command

IMFC SET 12-113 Issue time-initiated requests from an EXEC

IMSTRAN 12-117 Initiate an IMS/VS transaction

JES3CMD 12-119 Issue a JES3 command

JESALLOC 12-120 Allocate a SYSOUT data set to the given DD name.

JESSUBM 12-122 Submit a JOB from a DD name or stem variables.

LOGOFF 12-125 Terminate a previously established OSPI session

LOGON 12-127 Establish or re-establish an OSPI session between an EXEC and
any VTAM application

MSG 12-129 Write a message in the BBI-SS PAS Journal Log

NOTIFY 12-130 Initiate a pager request through the Elan workstation

POST 12-131 Posts a name for an EXEC that waits on that name

RECEIVE 12-133 Attempt to receive a screen for an OSPI session

RES 12-134 Issue a SYSPROG service command

SCAN 12-136 Investigate and retrieve data for an OSPI session

SELECT 12-140 Invoke an EXEC or user program

SEND 12-144 Send a message to a TSO or IMS user

SESSINF 12-146 Write OSPI screen contents and relevant information to the
OSPISNAP DD command

SETTGT 12-148 Set the target system ID

SHARE 12-150 Exchanges variables with an AOAnywhere EXEC

STDTIME 12-153 Instruct Elan to get Greenwich date and time and local date and
time

SUBMIT 12-155 Submit a job to MVS

TAILOR 12-157 Enables you to manipulate the contents of members of partitioned
data sets, or REXX stem variables (including a TSO CLIST
variation)

TRANSMIT 12-171 Transmit modified OSPI screen contents to the application

TYPE 12-173 Enter data into an OSPI session

VCKP 12-175 Checkpoint PROFILE variables

VDCL 12-177 Define a variable structure

VDEL 12-179 Delete variable(s)

VDELL 12-182 Deletes one or more long variables from one of the
AutoOPERATOR variable pools

VDEQ 12-184 Issue an MVS dequeue

Table 12-1 IMFEXEC Statements (Part 2 of 3)

Command Page Function
BMC Software, Inc., Confidential and Proprietary Information

12-2 MAINVIEW AutoOPERATOR Advanced Automation Guide

General Coding Conventions
General Coding Conventions

 The following sections briefly describe the coding conventions for using the
IMFEXEC command statements.

REXX Coding

Many of the IMFEXEC keywords contain parentheses. To avoid problems
with REXX interpreting IMFEXEC keywords as functions, enclose
IMFEXEC statements in double quotation marks:

"IMFEXEC ALERT ’CICSPROD has abended’ QUEUE(CICS)"

CLIST EXEC example:

IMFEXEC ALERT ’CICSPROD has abended’ QUEUE(CICS)

If you need to use a variable in a REXX IMFEXEC statement, it must not be
coded within the double quotes. In the following example, REXX will
substitute a value for the variable CQUEUE:

"IMFEXEC ALERT ’CICSPROD has abended’ QUEUE("cqueue")"

VENQ 12-185 Issue an MVS enqueue

VGET 12-187 Retrieve variable(s) from a pool

VGETL 12-191 Copies one or more long variables from one of the AutoOPERATOR
pools into the TSO pool

VLST 12-193 Retrieve names of defined variable names

VLSTL 12-195 Retrieves a long variable from the specified pool and places it into
the TSO pool

VPUT 12-197 Store variable in a pool

VPUTL 12-201 Creates or sets a long variable from a variable in the TSO pool

WAIT 12-203 Pause for a fixed interval during EXEC processing

WAITLIST 12-205 Returns information about outstanding WAIT EXECs in variables
LINE1 through LINExx

WTO 12-208 Write a message to the system console

WTOR 12-210 Write a message to the system console and wait for a reply

Table 12-1 IMFEXEC Statements (Part 3 of 3)

Command Page Function
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-3

General Coding Conventions
CLIST EXEC example:

IMFEXEC ALERT ’CICSPROD has abended’ QUEUE("cqueue")

In the above example, "IMFEXEC ALERT ’CICSPROD has abended’
QUEUE(" is the first part of the statement, cqueue is the value to be
substituted, and ")" is the second part of the statement.

Using Quotation Marks

The IMFEXEC commands conform to TSO CLIST coding conventions; for
example, all parameters containing embedded blanks must be enclosed in
single quotation marks. To use a single quotation mark in a string of
characters, use two single quotation marks.

"IMFEXEC MSG ’JOB ’’I327802’’ has abended’" REXX
IMFEXEC MSG ’JOB ’’I327802’’ has abended’ CLIST

The resulting message appears in this format:

JOB ’I327802’ has abended

Using Variable Names

Variable names are limited to 32 characters in length. The first character of
the variable must be alphanumeric or one of the following special characters:

• $

• @

• #

Reading Condition Codes

Every command returns a condition code in the variable IMFCC in the TSO
pool. Refer to Chapter 4, “Using Variables in REXX EXECs” for more
information about pools.

Each IMFEXEC command statement description includes a table describing
the parameters for the command. The table uses the format:
BMC Software, Inc., Confidential and Proprietary Information

12-4 MAINVIEW AutoOPERATOR Advanced Automation Guide

General Coding Conventions
The numbers in this table correspond to:

1 A short parameter identifier. If the parameter has uppercase letters,
this identifier must be coded exactly as shown.

If parts of the identifier are shown in bold, this parameter can
be abbreviated, using the bold letters.

Positional parameters are not associated with a specific
identifier. In these cases, this column contains an alias that
describes the parameter.

2 The function of the parameter.

3 Notes about the parameter. Typically, these notes describe any
length, value, range, or string limitations.

Parameter Function Notes

1 2 3
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-5

ALERT
ALERT

This command manages exception messages and message queues that can be
displayed by any of the STATUS applications and ALERTs applications.

The following table describes the parameters.

Command Parameters

ALERT alert-key
’alert-text’
[FUNCTION(ADD|COUNT|CREATEQ|DELETE|DELETEQ|LISTQ|READQ)]
[ALARM(NO|YES)]
[COLOR(RED|PINK|YELLOW|DKBLUE|LTBLUE|GREEN|WHITE)]
[DISPOSE(KEEP|DELETE)]
[ESCALATE(UP|DOWN)]
[ESCEXEC(’execname p1 p2 p3 ... pn’)]
[EXEC(’execname p1 p2 p3 .. pn’)]
[HELP(panelname)]
[INTERVAL(nnnn,nnnn,nnnn,nnnn,nnnn,nnnn)]
[PCMD(’cmd string’)]
[POSITION(position)]
[PRI(CRITICAL|MAJOR|MINOR|WARNING|INFORMATIONAL|CLEARING)]
[PUBLISH(REPLACE|ADD|NO)]
[QUEUE(MAIN|queue name)]
[RETAIN(YES|NO)]
[SYSTEM(YES|NO)]
[TARGET(target name)]
[TEXT(’text string’)]
[ORIGIN(origin)]
[UDATA(’user data’)]
[USER(user name)]

Table 12-2 ALERT Command Parameters

Parameter Function Notes

alert-key The key used to uniquely identify an
ALERT within a queue

Maximum length is 64 alphanumeric
positions. Required for:

FUNCTION(ADD)

FUNCTION(DELETE)
Optional for:

FUNCTION(READQ)
You must specify a unique key for every
ALERT you create. If you create a second
ALERT with the same key as an already
existing ALERT, the second ALERT will
overwrite the first ALERT.
The key cannot contain blanks.
BMC Software, Inc., Confidential and Proprietary Information

12-6 MAINVIEW AutoOPERATOR Advanced Automation Guide

ALERT
’alert-text’ The text of the ALERT message Maximum message length is 255
alphanumeric positions. This parameter is
required for
FUNCTION(ADD)
If the contents of the text are null but
specified (for example, zero length), the
ALERT text is replaced by N/A. A
specification of /N within the alert text
forces a line break. You must include a
blank space before and after using /N.

ALARM Emit audible alarm from the terminal on
the ALERT Detail application

Possible values are:
YES Sound alarm
NO Do not sound alarm

NO is the default.

COLOR|COL The color in which the ALERT is displayed
in the ALERT DETAIL and STATUS
applications (overrides default color
associated with ALERT priority)

This parameter does not have any impact
upon the ALERT OVERVIEW application.
When an ALERT’s priority is increased or
decreased (with the ESCALATE
parameter), the new ALERT priority’s
color will always default to the following
list of colors:
CRITICAL(RED)
MAJOR(PINK)
MINOR(YELLOW)
WARNING(DKBLUE)
INFORMATIONAL(LTBLUE)
CLEARING(GREEN)

DISPOSE Allows you to specify whether an ALERT
is kept or deleted when it has reached its
final escalation priority level

This keyword must be used with the
INTERVAL keyword.
Possible values are:
KEEPKeep the ALERT in its queue
DELETEDelete the ALERT from the
queue
KEEP is the default.
The variable AMFEDISP returns the value
of this keyword.

ESCALATE Allows you to create ALERTs that change
in priority over a specified interval of time

This keyword must be used with the
INTERVAL keyword.
Possible values are:
UPThe ALERT priority is upgraded from
less critical to more critical.
DOWNThe ALERT priority is downgraded
from more critical to less critical.
UP is the default.
The variable AMFEDIR returns the value
of this keyword.

Table 12-2 ALERT Command Parameters (continued)

Parameter Function Notes
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-7

ALERT
ESCEXEC Allows you to specify an EXEC (with
parameters) that is scheduled when the
ALERT reaches its final priority level

This keyword must be used with the
INTERVAL keyword.
The variable AMFEEXEC returns the
value of this keyword.

ESCEXEC Allows you to specify an EXEC (with
parameters) that is scheduled when the
ALERT reaches its final priority level

This keyword must be used with the
INTERVAL keyword.
The variable AMFEEXEC returns the
value of this keyword.

EXEC The name of the ALERT-initiated follow-up
EXEC and its parameters

Maximum length is 256 characters.
Refer to “Parameters Passed to the
EXEC” on page 3-7 for more information
about parameters passed to ALERT-
initiated EXECs.

FUNCTION|FUN The function to be performed Use the FUNCTION keyword with:
• ADD
• COUNT
• CREATEQ
• DELETE
• DELETEQ
• LISTQ
• READQ
For more information about these
functions and the return codes they
generate, refer to “FUNCTION Names
and IMFCC Return Codes” on page 12-
12.

HELP The name of an extended help panel Maximum length is 8 characters.
This help panel is displayed when you
enter the EXPAND primary command in
the ALERT DETAIL application while the
cursor is positioned on the ALERT. The
help panel is a text member without any
formatting or control characters.
Create a partitioned data set (LRECL FB
80) to contain your help members. Modify
your TSCLIST EXEC to insert this data
set into the PNLLIB concatenation.

Table 12-2 ALERT Command Parameters (continued)

Parameter Function Notes
BMC Software, Inc., Confidential and Proprietary Information

12-8 MAINVIEW AutoOPERATOR Advanced Automation Guide

ALERT
INTERVAL Allows you to specify one to six intervals
of time over which the priority of an
ALERT will change
An ALERT’s priority can either increase
(become more critical) or decrease
(become less critical) in priority over the
specified time intervals.
The interval can be specified from 0 to
9999 minutes. At least one interval must
be specified for an ALERT when
ESCALATE is specified.
When the final interval expires:
• The action specified by the DISPOSE

keyword occurs (either the ALERT is
deleted or kept)

• If an EXEC is specified with the
ESCEXEC keyword, the EXEC is
scheduled

This keyword must be used with the
ESCALATE keyword and you must
specify at least one interval for an ALERT
with ESCALATE specified. The variables
AMFEINT1 through AMFEINT6 return the
values associated with this keyword.
In addition, when you want to have an
ALERT change in priority, you must
always code one interval more than the
number of changes. No priority changes
occur in the last interval.
For example, if you want an ALERT to
change from MAJOR to CRITICAL, you
must code two interval periods.
Refer to “Examples of ALERT Escalation”
on page 12-24 for examples.

ORIGIN A new origin to assign to this ALERT A 1- to 8-character user-defined origin
assigned to the ALERT.
The first character cannot be a numeric,
The user-defined origin overrides the
EXEC's IMFSYSID (or the originating job
name for the EXEC).

PCMD A command to be executed if the terminal
operator uses the TRANSFER command
on the ALERT DETAIL panel

Any command that is valid from the
command line is a valid value for this
parameter.
Maximum length is 256 characters.
PCMD is executed as if it were entered on
the command line. You should use the
SYSTEM parameter (described below) or
include the BBI SYSTEM command for
ALERTs that contain PCMD to ensure
that the target field of the transferred-to
application will be correct. If you use the
SYSTEM parameter, the SYSTEM
command is executed after all other
commands specified with PCMD have
executed.
For example:
PCMD(’CICS;EX TRAN;SYSTEM
SYSA’)
Note that if you have blanks in the PCMD
statement, you must use single quote
marks.

POSITION|POS The order of the ALERT in the queue to
read

Valid values are in the range from 1 to
32,767.
This parameter is used only with the
READQ function.

Table 12-2 ALERT Command Parameters (continued)

Parameter Function Notes
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-9

ALERT
PRIORITY The priority of the ALERT A valid value is one of the following:

CRITICAL(RED)

MAJOR(PINK)

MINOR(YELLOW)

WARNING(DKBLUE)

INFORMATIONAL(LTBLUE)

CLEARING(GREEN)

PUBLISH Specifies whether an ALERT is published
and how it is published to connected
PATROL EM workstations that have
subscribed to receive ALERTs through
the General Message Exchange (GME).

Possible values are as follows:
REPLACEAn ALERT replace for the
ALERT’s key/queue is sent to all PATROL
EM workstations that have subscribed to
receive ALERTs from this
AutoOPERATOR. If there is already an
ALERT with that key/queue on a PATROL
EM workstation, it is deleted before
writing the new ALERT with that
key/queue.
ADDAn ALERT add is sent to all
workstations that have subscribed to
receive ALERTs from this
AutoOPERATOR. If there is already an
ALERT with that key/queue on a PATROL
EM workstation, it is not deleted before
writing the new ALERT with that
key/queue.
ADD is the default.
NOThe ALERT is not written to the
connected PATROL EM workstations even
if they have subscribed to receive
ALERTs.

QUEUE|QUE The name of the queue to access or into
which to place the ALERT

Length can be 1 - 8 characters;
embedded blanks are valid.

RETAIN Allows you to specify that an ALERT will
be retained across BBI-SS PAS restarts
(both cold and warm restarts) and MVS
IPLs
Note that using this parameter causes the
ALERT to be written to DASD. Therefore,
you should use this parameter only after
careful consideration. A BBI-SS PAS
(warm or cold) start or MVS IPL may
eliminate the exceptional situation that
caused the ALERT in the first place.

Possible values are:
YESRetain this ALERT in disk space so
that it can survive a BBI-SS PAS warm or
cold start.
NODo not retain this ALERT to survive
BBI-SS PAS warm or cold starts.
NO is the default.
ALERTs that specify RETAIN(YES)
cannot also specify the INTERVAL
keyword.
In other words, ALERTs that are to be
retained across BBI-SS PAS restarts or
MVS IPLs cannot change priority (either
increase or decrease).
The variable AMFRTAIN returns the value
of this keyword.

Table 12-2 ALERT Command Parameters (continued)

Parameter Function Notes
BMC Software, Inc., Confidential and Proprietary Information

12-10 MAINVIEW AutoOPERATOR Advanced Automation Guide

ALERT
SYSTEM Determines whether or not the ALERT
Detail processor switches the current
target to the origin of the ALERT when
processing a TRANSFER (PCMD)

The default is yes.
The target is changed to reflect what was
coded in the ORIGIN parameter or the
AutoOPERATOR SSID.

TARGET The target to which the ALERT is sent The ALERT is sent to the subsystem that
manages the specified target and exists
only in that subsystem.

TEXT A pattern text string This parameter applies to only the
READQ and COUNT functions. Only
ALERTs matching this text string are
considered during these operations.

UDATA Any desired user data string Maximum length is 256 bytes.
The contents of the UDATA field may be
retrieved using the READQ function.

USER The name of a user ID that the ALERT is
addressed to

A 1 - 8 character valid BBI-TS user ID.
Contents of the user field can be used to
tailor ALERT DETAIL displays using the
ALERT DETAIL PROFILE panel. Refer to
the “ALERT Management Facility” chapter
in the MAINVIEW AutoOPERATOR Basic
Automation Guide for more information.

Table 12-2 ALERT Command Parameters (continued)

Parameter Function Notes
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-11

ALERT
FUNCTION Keywords

The following table lists and describes, in alphabetical order, the return codes
for the different functions that can be used with the FUNCTION keyword in
an IMFEXEC ALERT EXEC statement.

Table 12-3 FUNCTION Names and IMFCC Return Codes

FUNCTION Description

IMFCC
Return
Code
Value Return Code Description

ADD Adds an ALERT to a queue and
creates a new queue if one does
not already exist.
Valid operands are
ALARM
COLOR
DISPOSE
ESCALATE
ESCEXEC
EXEC
HELP
INTERVAL
RCMD
POSITION
PRI
PUBLISH
QUEUE
RETAIN
SYSTEM
TARGET
TEXT
ORIGIN
UDATA
USER

-1 When the TGTSS() keyword is used,
specifies that either the request timed out or
the target system was shut down in the
middle of a request.

0 ADD was successful.

16 Invalid syntax was used.

20 ALERT queue is full.

32 No XCF connection exists between the
subsystem that was specified with the SS |
SSID() keyword and the subsystem that was
specified by using the TGTSS() keyword.
The target subsystem is most likely not
active or not in the same sysplex as the
originating subsystem.

36 The subsystem that was specified by using
the SS | SSID() keyword cannot be found on
the local system.

40 Security definitions disallowed access to this
function on the specified subsystem.

48 Incompatible AOAnywhere versions exist.

52 An attempt was made to execute this
function under NetView without a valid
Access/NetView product key.

56 The BBI-SS PAS is not an AutoOPERATOR.
If this BBI-PAS is meant to be an
AutoOPERATOR, ensure that the BBKEYS
member contains valid AutoOPERATOR
keys and product=AAO is specified in
BBISSP00.
BMC Software, Inc., Confidential and Proprietary Information

12-12 MAINVIEW AutoOPERATOR Advanced Automation Guide

ALERT
COUNT Counts the numbers of ALERTs
in a given queue.
Refer to “TSO Variables Returned
from COUNT” on page 12-20 for
more information.
Valid operands are
QUEUE
TARGET

-1 When the TGTSS() keyword is used,
specifies that either the request timed out or
the target system was shut down in the
middle of a request.

0 COUNT was successful; count value is
returned in variable AMFCOUNT.

8 Queue does not exist.

16 Invalid syntax used.

32 No XCF connection exists between the
subsystem specified with the SS | SSID()
keyword and the subsystem specified using
the TGTSS() keyword. The target subsystem
is most likely not active or not in the same
sysplex as the originating subsystem.

36 The subsystem specified using the SS |
SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this
function on the specified subsystem.

48 Incompatible AOAnywhere versions exist.

52 An attempt was made to execute this
function under NetView without a valid
Access/NetView product key.

56 The BBI-SS PAS is not an AutoOPERATOR.
If this BBI-PAS is meant to be an
AutoOPERATOR, ensure that the BBKEYS
member contains valid AutoOPERATOR
keys and product=AAO is specified in
BBISSP00.

Table 12-3 FUNCTION Names and IMFCC Return Codes (continued)

FUNCTION Description

IMFCC
Return
Code
Value Return Code Description
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-13

ALERT
CREATEQ Creates a new ALERT queue.
Valid operands are
QUEUE
TARGET

-1 When the TGTSS() keyword is used,
specifies that either the request timed out or
the target system was shut down in the
middle of a request.

0 Queue was created successfully.

4 Queue already exists.

16 Invalid syntax was used.

32 No XCF connection exists between the
subsystem specified with the SS | SSID()
keyword and the subsystem specified using
the TGTSS() keyword. The target subsystem
is most likely not active or not in the same
sysplex as the originating subsystem.

36 The subsystem specified using the SS |
SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this
function on the specified subsystem.

48 Incompatible AOAnywhere versions exist.

52 An attempt was made to execute this
function under NetView without a valid
Access/NetView product key.

56 The BBI-SS PAS is not an AutoOPERATOR.
If this BBI-PAS is meant to be an
AutoOPERATOR, ensure that the BBKEYS
member contains valid AutoOPERATOR
keys and product=AAO is specified in
BBISSP00.

Table 12-3 FUNCTION Names and IMFCC Return Codes (continued)

FUNCTION Description

IMFCC
Return
Code
Value Return Code Description
BMC Software, Inc., Confidential and Proprietary Information

12-14 MAINVIEW AutoOPERATOR Advanced Automation Guide

ALERT
DELETE Deletes an ALERT by the ALERT
key.
Valid operands are
QUEUE
TARGET

-1 When the TGTSS() keyword is used,
specifies that either the request timed out or
the target system was shut down in the
middle of a request.

0 DELETE was successful.

4 ALERT does not exist.

8 Queue does not exist.

16 Invalid syntax was used.

32 No XCF connection exists between the
subsystem specified with the SS | SSID()
keyword and the subsystem specified using
the TGTSS() keyword. The target subsystem
is most likely not active or not in the same
sysplex as the originating subsystem.

36 The subsystem specified using the SS |
SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this
function on the specified subsystem.

48 Incompatible AOAnywhere versions exist.

52 An attempt was made to execute this
function under NetView without a valid
Access/NetView product key.

56 The BBI-SS PAS is not an AutoOPERATOR.
If this BBI-PAS is meant to be an
AutoOPERATOR, ensure that the BBKEYS
member contains valid AutoOPERATOR
keys and product=AAO is specified in
BBISSP00.

Table 12-3 FUNCTION Names and IMFCC Return Codes (continued)

FUNCTION Description

IMFCC
Return
Code
Value Return Code Description
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-15

ALERT
DELETEQ Deletes an ALERT queue.
Valid operands are
QUEUE
TARGET

-1 When the TGTSS() keyword is used,
specifies that either the request timed out or
the target system was shut down in the
middle of a request.

0 DELETEQ was successful.

4 Queue does not exist.

16 Invalid syntax was used.

32 No XCF connection exists between the
subsystem specified with the SS | SSID()
keyword and the subsystem specified using
the TGTSS() keyword. The target subsystem
is most likely not active or not in the same
sysplex as the originating subsystem.

36 The subsystem specified using the SS |
SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this
function on the specified subsystem.

48 Incompatible AOAnywhere versions exist.

52 An attempt was made to execute this
function under NetView without a valid
Access/NetView product key.

56 The BBI-SS PAS is not an AutoOPERATOR.
If this BBI-PAS is meant to be an
AutoOPERATOR, ensure that the BBKEYS
member contains valid AutoOPERATOR
keys and product=AAO is specified in
BBISSP00.

Table 12-3 FUNCTION Names and IMFCC Return Codes (continued)

FUNCTION Description

IMFCC
Return
Code
Value Return Code Description
BMC Software, Inc., Confidential and Proprietary Information

12-16 MAINVIEW AutoOPERATOR Advanced Automation Guide

ALERT
LISTQ Lists (in TSO variable IMFNOL)
the number of ALERT queues
present in the target subsystem.
Refer to “TSO Variables Returned
from LISTQ” on page 12-20 for
more information.
Valid operand is
TARGET

-1 When the TGTSS() keyword is used,
specifies that either the request timed out or
the target system was shut down in the
middle of a request.

0 LISTQ was successful; ALERT queue data
is returned.

16 Invalid syntax was used.

32 No XCF connection exists between the
subsystem specified with the SS | SSID()
keyword and the subsystem specified using
the TGTSS() keyword. The target subsystem
is most likely not active or not in the same
sysplex as the originating subsystem.

36 The subsystem specified using the SS |
SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this
function on the specified subsystem.

48 Incompatible AOAnywhere versions exist.

52 An attempt was made to execute this
function under NetView without a valid
Access/NetView product key.

56 The BBI-SS PAS is not an AutoOPERATOR.
If this BBI-PAS is meant to be an
AutoOPERATOR, ensure that the BBKEYS
member contains valid AutoOPERATOR
keys and product=AAO is specified in
BBISSP00.

Table 12-3 FUNCTION Names and IMFCC Return Codes (continued)

FUNCTION Description

IMFCC
Return
Code
Value Return Code Description
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-17

ALERT
READQ Reads an ALERT from the queue
and returns the characteristics of
the ALERT in TSO variables.
Refer to “TSO Variables Returned
from the READQ Parameter” for
more information.
Valid operands are
POSITION
QUEUE
TARGET

-1 When the TGTSS() keyword is used,
specifies that either the request timed out or
the target system was shut down in the
middle of a request.

0 READQ was successful; ALERT data
returned.

4 Either no match was found when using KEY
and TEXT criteria or the search ran past the
end of the queue when using the POSITION
keyword.

8 Queue does not exist.

16 Invalid syntax was used.

32 No XCF connection exists between the
subsystem specified with the SS | SSID()
keyword and the subsystem specified using
the TGTSS() keyword. The target subsystem
is most likely not active or not in the same
sysplex as the originating subsystem.

36 The subsystem specified using the SS |
SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this
function on the specified subsystem.

48 Incompatible AOAnywhere versions exist.

52 An attempt was made to execute this
function under NetView without a valid
Access/NetView product key.

56 The BBI-SS PAS is not an AutoOPERATOR.
If this BBI-PAS is meant to be an
AutoOPERATOR, ensure that the BBKEYS
member contains valid AutoOPERATOR
keys and product=AAO is specified in
BBISSP00.

Table 12-3 FUNCTION Names and IMFCC Return Codes (continued)

FUNCTION Description

IMFCC
Return
Code
Value Return Code Description
BMC Software, Inc., Confidential and Proprietary Information

12-18 MAINVIEW AutoOPERATOR Advanced Automation Guide

ALERT
TSO Variables Returned from the READQ Parameter

The following table lists the TSO variables returned from the READQ
parameter.

 Name Contents Length/Format Example

AMFALARM Alarm value of the alert 1 / Y (YES) or N
(NO)

Y (for YES)

AMFCOLOR Color of ALERT 6 / As specified by
COLOR parameter

RED

AMFEDIR Increase or decrease the priority
of the ALERT when it is
escalated

1 / Character (U or
D)

D

AMFEDISP Keep or delete the ALERT at the
final escalation level

1 / Character (K or D) KEEP

AMFEEXEC Name of EXEC and EXEC
parameters scheduled at final
escalation priority

0-256 / Character ALRTEXEC

AMFEINT1
AMFEINT2
AMFEINT3
AMFEINT4
AMFEINT5
AMFEINT6

Number (in minutes) from 0 to
9999

4 / Numeric (or null) 15

AMFEXEC EXEC and EXEC parameters
associated with the ALERT

0-256 / Character DBSTART SHIFT2

AMFHELP Extended Alert member name 8 / Character HELPXT2

AMFIDATE Date ALERT was issued 9 / dd-mmm-yy 14-FEB-92

AMFITIME Time ALERT was issued 8 / hh:mm:ss 12:02:24

AMFKEY Key of the ALERT 1-64 / Character DASD01

AMFORGN Origin of ALERT 1-8 / Character CICSPROD

AMFPCMD Primary command specified in
ALERT

0-256 / Character CICS; EX TRAN

AMFPRIOR Priority of ALERT 13 / As specified in
PRIORITY parameter

INFORMATIONAL

AMFPSYS Value for SYSTEM keyword
(could be either YES or NO)

1 / Character (Y or
null)

Y

AMFPUB Value of the PUBLISH keyword
when an ALERT is created

2-7/ADD, REPLACE,
or NO

ADD

AMFQUEUE Name of queue for ALERT 8 / Character MAIN

AMFRTAIN Specifies whether or not to retain
an ALERT across BBI-SS PAS
warm and cold starts

1 / Character (Y or N) Y

AMFSSID System from which ALERT was
issued

8 / Character SYSB
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-19

ALERT
TSO Variables Returned from COUNT

The following table lists the TSO variables returned from the COUNT
parameter.

TSO Variables Returned from LISTQ

The following table lists the TSO variables returned from the LISTQ
parameter.

AMFTEXT Text of the ALERT 0-255 / Character This is a test ALERT

AMFTGT Target to which ALERT was
issued

1-8 / Character IMS22P

AMFUDATA User data string 0-256 / Character Any value specified in UDATA
parameter

AMFUSER Name of the user ID that the
ALERT is addressed to

8 / Character JDB1

Name Contents

AMFCOUNT Number of ALERTs in designated queue

Name Contents

IMFNOL Number of queues present in the target susbsystem. In variables
LINE1 through LINExxx, it returns the names of all the queues. Limit is
500 queue names.

 Name Contents Length/Format Example
BMC Software, Inc., Confidential and Proprietary Information

12-20 MAINVIEW AutoOPERATOR Advanced Automation Guide

ALERT
Examples

This section describes examples using the IMFEXEC ALERT command
statement. A brief discussion follows the example.

Example 1: Creating a Multi-line ALERT

/* REXX */
"IMFEXEC ALERT NETW2",
"’COMMUNICATION LINES DOWN: /N - DALLAS /N + - CHICAGO’ FUNCTION",
"(ADD) QUEUE(NETWORK)",
"PRIORITY(CRITICAL) COLOR(PINK)"

CLIST EXEC example:

IMFEXEC ALERT NETW2 +
 ’COMMUNICATION LINES DOWN: /N - DALLAS /N - CHICAGO’ FUNCTION +
 (ADD) QUEUE(NETWORK) +
 PRIORITY(CRITICAL) COLOR(PINK)

ALERTs are created as single-line messages unless you use the characters /N
in the alert-text parameter. The characters /N indicate the beginning of a new
line of alert-text.

You must use a blank space before and after /N. In the example above, the
alert-text parameters includes the use of /N in two places. The EXEC
command in this example produces the following multi-line ALERT:

___ 11:43 CHICAGO COMMUNICATION LINES DOWN:
 - DALLAS
 - CHICAGO

Example 2: Associating a Help Panel with an ALERT

/* REXX */
"IMFEXEC ALERT NETW1",
 "’ALM0100 - 8100 COMMUNICATION LINE DOWN: /N - CHI998A21’",
 "FUNCTION(ADD) QUEUE(NETWORK) PRIORITY(WARNING) HELP(H8100)",
 "COLOR(RED)"
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-21

ALERT
CLIST EXEC example:

IMFEXEC ALERT NETW1 +
 ’ALM0100 - 8100 COMMUNICATION LINE DOWN: /N - CHI998A21’ +
 FUNCTION(ADD) QUEUE(NETWORK) PRIORITY(WARNING) HELP(H8100) +
 COLOR(RED)

Use the HELP keyword of the IMFEXEC ALERT command statement to
indicate there is a help panel associated with an ALERT.

Prior to using the HELP keyword in the IMFEXEC ALERT command, you
must create and add the help panel to BBPLIB. The HELP keyword specifies
the name of the BBPLIB member name. The example shows an IMFEXEC
ALERT command statement that specifies a help panel named H8100. The
example is a REXX statement and therefore uses double quotation marks.
The ALERT created by the EXEC appears on the ALERT DETAIL panel in
the following format:

TIME IND ORIGIN _______________________________________
11:44 h CHICAGO ALM0100 8100 COMMUNICATION LINE DOWN:
 -CHI998A21

The ALERT displays with an h in the IND column. This indicates that there
is a help panel associated with the ALERT.

To access the help panel, place the cursor anywhere on the ALERT text and
press the PF key assigned to EXPAND. You can also type EXPAND on the
command line and then place the cursor anywhere on the ALERT text and
press ENTER.
BMC Software, Inc., Confidential and Proprietary Information

12-22 MAINVIEW AutoOPERATOR Advanced Automation Guide

ALERT
Example 3: Managing ALERT Queues

/* REXX */
"IMFEXEC VGET THRSHOLD"
"IMFEXEC ALERT FUNCTION(COUNT) QUEUE(NETWORK)"
N=AMFCOUNT
DO WHILE N > 0
 "IMFEXEC ALERT FUNCTION(READQ) QUEUE(NETWORK) POSITION("N")"
 IF IMFCC = 0 THEN DO
 IF AMFUDATA > THRSHOLD THEN DO
 "IMFEXEC ALERT "AMFKEY" FUNCTION(DELETE) QUEUE(NETWORK)"
 "IMFEXEC ALERT "AMFKEY" FUNCTION(ADD) ’"AMFTEXT"’ QUEUE(SUPERVSE)"
 END
 END
 N = N - 1
END

CLIST EXEC example:

PROC 0
IMFEXEC VGET THRSHOLD
IMFEXEC ALERT FUNCTION(COUNT) QUEUE(NETWORK)
SET N=&AMFCOUNT
DO WHILE N > 0
 IMFEXEC ALERT FUNCTION(READQ) QUEUE(NETWORK) POSITION(&N)
 IF &IMFCC = 0 THEN DO
 IF &AMFUDATA GT &THRSHOLD THEN DO
 IMFEXEC ALERT &AMFKEY FUNCTION(DELETE) QUEUE(NETWORK)
 IMFEXEC ALERT &AMFKEY FUNCTION(ADD) ’&AMFTEXT’ QUEUE(SUPERVSE)
 END
 END
 SET N = &N - 1
END

You can periodically check the queues for ALERTs that have not been
responded to and change their priority so that they are noticed.

In the above EXEC, the READQ function is used to set AMFCOUNT equal
to the number of ALERTs in the Network queue. The EXEC then reads each
ALERT from the NETWORK queue using POSITION and tests the user data
presented in the AMFUDATA variable.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-23

ALERT
If the criteria is met, the ALERT is deleted from the Network queue using the
AMFKEY variable (the key of the ALERT). Then the ALERT is added to the
supervisor’s queue using the same key and using the original text in the
AMFTEXT variable.

Note: This example assumes that the ALERTs were originally created with
some meaningful user data (such as the date and time).

Examples of ALERT Escalation

The following examples show how to create ALERTs with the ESCALATE
parameter so that an ALERT can increase or decrease in priority over
specified intervals of time.

Example 1: Escalating an ALERT from lowest to highest priority:

The ALERT in this example will be upgraded from Informational to Critical
priority over five time intervals. The following list describes the properties of
the ALERT:

• The original priority of the ALERT is Informational
(PRIORITY(info)).

• The ALERT’s priority will be upgraded (Escalate(up)).

• The priority will be upgraded gradually over the intervals of 10 minutes,
20 minutes, 30 minutes, 30 minutes, and 40 minutes
(Interval(10,20,30,30,40)).

• When the ALERT reaches the final priority level, the ALERT should be
deleted (Dispose(delete)).

CLIST EXEC example:

/* REXX */

"IMFEXEC ALERT key1 ’test alert’ Priority(info) Escalate(up)",
 "Interval(10(1),20(2),30(3),30(4),40(5)) Dispose(delete)"

BMC Software, Inc., Confidential and Proprietary Information

12-24 MAINVIEW AutoOPERATOR Advanced Automation Guide

ALERT
CLIST EXEC example:

IMFEXEC ALERT key1 ’test alert’ Priority(info) Escalate(up),
 Interval(10(1),20(2),30(3),30(4),40(5)) Dispose(delete)

When the EXEC that schedules this ALERT is scheduled, the ALERT’s
original priority is Informational. After 10 minutes (1), the priority
automatically is upgraded from Informational to Warning. The ALERT stays
at the Warning priority for 20 minutes (2) and is upgraded to Minor. The
ALERT stays at Minor priority for 30 minutes (3) before being upgraded to
Major. It stays at Major priority for 30 minutes (4) before being upgraded to
Critical. After remaining at Critical for 40 minutes (5), the ALERT is deleted.

Example 2: Downgrading ALERT priority over two intervals:

The ALERT in this example will be downgraded over two time intervals. The
following list describes the properties of the ALERT:

• The original priority of the ALERT is Minor (PRIORITY(minor)).

• The ALERT’s priority will be downgraded (Escalate(down)).

• The priority will be downgraded over the intervals of 10 minutes and 20
minutes (Interval(10,20)).

• When the ALERT reaches the final priority level, the ALERT should be
deleted (Dispose(delete)).

REXX EXEC example:

/* REXX */

"IMFEXEC ALERT key2 ’test alert’ Priority(minor) Escalate(down)",
 "Interval(10(1),20(2)) Dispose(delete)"

CLIST EXEC example:

IMFEXEC ALERT key2 ’test alert’ Priority(minor) Escalate(down),
 Interval(10(1),20(2)) Dispose(delete)
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-25

ALERT
When the EXEC that schedules this ALERT is scheduled, the ALERT’s
original priority is Minor. After 10 minutes (1), the priority automatically is
downgraded from Minor to Warning. The ALERT remains at the Warning
priority for 20 minutes (2) and is deleted at the end of the interval.

The intervals in this example also can be validly coded as follows:

Interval(10,20,)
or
Interval(10,20,,)
or
Interval(10,20,,,,)

Example 3: Upgrading an ALERT and scheduling an escalation EXEC:

The ALERT in this example will be upgraded over two time intervals and, at
the end of the second interval, an escalation EXEC will be scheduled. The
following list describes the properties of the ALERT:

• The original priority of the ALERT is Minor (PRIORITY(minor)).

• The ALERT’s priority will be upgraded (Escalate(up)).

• The priority will be upgraded over the intervals of 10 minutes and 20
minutes (Interval(10,20)).

• When the ALERT reaches the final priority level, the ALERT should be
kept until it is manually deleted (Dispose(keep)).

• When the ALERT completes its final interval, an EXEC named e100
with three parameters is scheduled (Escexec(’e100 p1 p2 p3’)).

REXX EXEC example:

/* REXX */

"IMFEXEC ALERT key2 ’test alert’ Priority(minor) Escalate(up)",
 "Interval(10(1),20(2)) Dispose(keep) Escexec(’e100 p1 p2 p3’)"

CLIST EXEC example:

IMFEXEC ALERT key2 ’test alert’ Priority(minor) Escalate(up),
 Interval(10(1),20(2)) Dispose(keep) Escexec(’e100 p1 p2 p3’)
BMC Software, Inc., Confidential and Proprietary Information

12-26 MAINVIEW AutoOPERATOR Advanced Automation Guide

ALERT
When the EXEC that schedules this ALERT is scheduled, the ALERT’s
original priority is Minor. After 10 minutes (1), the priority automatically is
upgraded from Minor to Major. The ALERT remains at the Major priority for
20 minutes (2) and the EXEC e100 with its three parameters is scheduled at
the end of the interval. The ALERT remains at the Major priority until it is
manually deleted.

Example 4: Skipping ALERT priorities during ALERT escalation:

The ALERT in this example will be upgraded from Informational to Major
while skipping the intermediate ALERT priorities. The following list
describes the properties of the ALERT:

• The original priority of the ALERT is
Informational(PRIORITY(info)).

• The ALERT’s priority will be upgraded (Escalate(up)).

• The priority will be upgraded over the two intervals of 10 and 20
minutes.

However, to skip ALERT priorities, you must specify an interval of zero
minutes for each of the intervals you want to skip.

In this example, the ALERT will skip two priorities and change from
Informational priority directly to Major after a 10-minute interval
(Interval(10,0,0,20)).

• When the ALERT reaches the final priority level, the ALERT should be
kept until it is manually deleted (Dispose(keep)).

• When the ALERT completes its final interval of 20 minutes, an EXEC
named e100 with three parameters is scheduled (Escexec(’e100 p1
p2 p3’)).

/* REXX */

"IMFEXEC ALERT key2 ’test alert’ Priority(info) Escalate(up)",
 "Interval(10(1),0(2),0(3),20(4)) Dispose(keep) Escexec(’e100 p1 p2 p3’)"

CLIST EXEC example:

IMFEXEC ALERT key2 ’test alert’ Priority(info) Escalate(up),
 Interval(10(1),0(2),0(3),20(4)) Dispose(keep) Escexec(’e100 p1 p2 p3’)
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-27

ALERT
When the EXEC that schedules this ALERT is scheduled, the ALERT’s
original priority is Informational. After 10 minutes (1), the ALERT’s priority
automatically is upgraded from Informational to Major. To skip the
intermediate priorities, you must code zero minutes for both Warning and
Minor priorities (2 and 3).

The ALERT remains at the Major priority for 20 minutes (4) and the EXEC
e100 with its three parameters is scheduled at the end of the interval. The
ALERT remains at the Major priority until it is manually deleted.

The intervals in this example also can be validly coded as:

Interval(10,0,0,20,)

or

Interval(10,0,0,20,)

Example 5: Showing the elapsed time for an escalated ALERT

The ALERT in this example will be upgraded from Minor to Major in one
10-minute interval. The following list describes the properties of the ALERT:

• The original priority of the ALERT is Minor (PRIORITY(minor)).

• The ALERT’s priority will be upgraded (Escalate(up)).

• The priority will be upgraded over one interval of 10 minutes
(Interval(10)).

• When the ALERT reaches the final priority level, the ALERT should be
deleted (Dispose(delete)).

• When the ALERT completes its final interval, an EXEC named e100
with three parameters is scheduled (Escexec(’e100 p1 p2 p3’)).

/* REXX */

"IMFEXEC ALERT key2 ’test alert’ Priority(minor) Escalate(up)"
 "Interval(10,20) Dispose(delete) Escexec(’e100 p1 p2 p3’)"

CLIST EXEC example:

IMFEXEC ALERT key2 ’test alert’ Priority(minor) Escalate(up)
 Interval(10,20) Dispose(delete) Escexec(’e100 p1 p2 p3’)
BMC Software, Inc., Confidential and Proprietary Information

12-28 MAINVIEW AutoOPERATOR Advanced Automation Guide

ALERT
The following example shows the life of the ALERT over time:

Examples of Invalid Coding with the Interval Parameter

Some examples of invalid coding are:

Example 1:

The interval keyword must contain at least one value.

"IMFEXEC ALERT key4 ’test alert’ Priority (info) Escalate(up) Interval(,)"

CLIST EXEC example:

IMFEXEC ALERT key4 ’test alert’ Priority (info) Escalate(up) Interval(,)

Example 2:

You can only specify as many intervals as there are between an originating
priority and the end priority.

"IMFEXEC ALERT key4 ’testalert’ Priority(major) Escalate(up)
 Interval(10,10,10)"

CLIST EXEC example:

IMFEXEC ALERT key4 ’testalert’ Priority(major) Escalate(up)
 Interval(10,10,10)

1:00pm
A Minor ALERT -->
is created

The ALERT stays at this
priority for 10 minutes

1:10pm
The ALERT is -->
upgraded to Major
Priority

The ALERT stays at this
priority for 20 minutes

1:30pm
The ALERT is deleted
and the EXEC e100
is scheduled
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-29

ALERT
In this example, there is only one priority that a major ALERT can be
upgraded to (Critical) and yet three intervals are specified.

Example 3:

The interval keyword cannot have null values for intervals.

"IMFEXEC ALERT key4 ’test alert’ Priority(major) Escalate(up)
Interval(,10,10)"

or

"IMFEXEC ALERT key4 ’test alert’ Priority(info) Escalate(up)
Interval(,10,,20)"

CLIST EXEC example:

IMFEXEC ALERT key4 ’test alert’ Priority(major) Escalate(up)
Interval(,10,10)

or

IMFEXEC ALERT key4 ’test alert’ Priority(info) Escalate(up)
Interval(,10,,20)

Example 4:

The intervals cannot have negative values.

“IMFEXEC ALERT key4 'test alert’ Priority(info) Escalate(up)
Interval(,10,-20)”

CLIST EXEC example:

IMFEXEC ALERT key4 'test alert’ Priority(info) Escalate(up)
Interval(,10,-20)
BMC Software, Inc., Confidential and Proprietary Information

12-30 MAINVIEW AutoOPERATOR Advanced Automation Guide

ALERT
Examples of the PUBLISH Keyword

The following examples demonstrate the usage of the IMFEXEC ALERT
PUBLISH keyword.

Example 1:

This example creates an ALERT and publishes it to all connected PATROL
EM workstations, deleting any ALERTs already present with the same queue
name and key.

“IMFEXEC ALERT TESTKEY ‘THIS IS A TEST’ FUNCTION(ADD) PUBLISH(REPLACE)
 QUEUE(TEST AREA)”

CLIST EXEC example:

IMFEXEC ALERT TESTKEY ‘THIS IS A TEST’ FUNCTION(ADD) PUBLISH(REPLACE)
 QUEUE(TEST AREA)

Example 2:

This example creates an ALERT but does not publish it to any connected
PATROL EM workstation.

“IMFEXEC ALERT TESTKEY ‘DO NOT PUBLISH ME’ FUNCTION(ADD) PUBLISH(NO)
 QUEUE(MAIN)”

CLIST EXEC example:

IMFEXEC ALERT TESTKEY ‘DO NOT PUBLISH ME’ FUNCTION(ADD) PUBLISH(NO)
 QUEUE(MAIN)
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-31

BKPT
BKPT

 Use this command anywhere in an EXEC when you want to set a breakpoint.
The breakpoint marks where the EXEC will stop while it is being executed
by the online EXEC Testing facility. If you execute the EXEC outside of the
online EXEC Testing facility, this command has no effect.

You can use this statement in native REXX code.

This command has no parameters. Use of this command has no effect on the
value of variable IMFCC.

 Command Parameters

BKPT
BMC Software, Inc., Confidential and Proprietary Information

12-32 MAINVIEW AutoOPERATOR Advanced Automation Guide

CHAP
CHAP

 This command uses a specified numeric parameter to change the dispatching
priority of the EXEC either up or down.

The following table describes the parameters.

Condition codes are listed in the following table.

Example

This example shows IMFEXEC CHAP where the specified value (-10) will
be added to the current dispatching priority.

“IMFEXEC CHAP(-10)”

CLIST EXEC example”

IMFEXEC CHAP(-10)

Specifying a value of zero (0) returns the current priority.

Command Parameters

CHAP (n)

Parameter Function Notes

n A numerical value that changes the
dispatching priority (either up or down) of
the EXEC. The value you specify is
added to the current dispatching priority.

The numerical value can range from -255
to 255. After the EXEC terminates, the
new dispatching value is returned in the
variable IMFPRIO. The value of IMFPRIO
can be from 0 to 255.

Value Description

16 Syntax error
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-33

CICS
CICS

The IMFEXEC CICS command statements use additional commands to
manage and control CICS resources.

An IMFEXEC CICS command statement consists of the keyword
IMFEXEC, the command prefix CICS, and an AutoOPERATOR or
MAINVIEW for CICS command with additional parameters. You can
specify resources with generic (*) and positional (+) wildcard characters,
except when noted. Note that when you use a generic in some resource
names, a maximum of only 200 discrete commands are executed. See each
command for which ones are affected by this limitation.

CICS requests only indicate success or failure of the scheduling of the
service. The AutoOPERATOR for CICS component within the CICS address
space issues additional messages to indicate its success or failure. You should
code Rule-initiated EXECs (triggered by journal messages in the format
FTxxx) to process the responses from CICS to ensure successful completion
of CICS-dependent commands.

The IMFEXEC CICS commands are supported only on a CICS system that is
defined to the local AutoOPERATOR BBI-SS PAS. If a CICS target is used
(refer to IMFEXEC SETTGT command on page 12-148) that is defined to a
remote AutoOPERATOR BBI-SS PAS, you will receive a FT421S message
and the service will fail.

To avoid this, use the IMFEXEC SELECT command to schedule an EXEC
on a remote AutoOPERATOR BBI-SS PAS and that EXEC can issue the
CICS command.
BMC Software, Inc., Confidential and Proprietary Information

12-34 MAINVIEW AutoOPERATOR Advanced Automation Guide

CICS
Condition Codes

The following table describes condition codes returned after issuing an
IMFEXEC CICS command statement.

The IMFCC variable can be tested by commands in the EXEC that follow the
IMFEXEC command. However, the IMFCC condition code is different for
services that are dependent or services that are independent of CICS.

For CICS-dependent services (where CICS performs the task), the request is
routed to the respective CICS system for processing. If the request is
successfully scheduled, IMFCC is set to 0; if the request fails, IMFCC is set
to 8. Either message FT037I or FT038W is written to the Journal log at this
time. The final status of the service is written to the Journal log by messages
FT401 through FT414. These messages are accompanied with explanatory
text. CEMT is an exception; CEMT returns the actual CICS response to the
log instead of issuing FTxxxx messages.

For CICS-independent services (services that do not require CICS to
perform the task), a Service Request Block (SRB) is scheduled to the target
CICS system to perform the processing. If the request is successfully
scheduled, IMFCC is set to 0; if the request fails, IMFCC is set to 8. Either
message FT037I or FT038W is written to the Journal log at this time. The
final status of the service is written to the Journal log by messages FT401 or
FT414. These messages are accompanied with explanatory text.

See Table 12-4 on page 12-36 for details on which services are CICS
dependent and which are not.

Value Meaning

0 Normal completion

4 Warning condition; not necessarily an error

8 Exceptional condition

12 Error condition; did not complete operation. Possible reasons are:
• For independent actions, the region was not available
• For dependent functions, the region was not connected to the BBI-SS PAS

16 Error condition

20 Severe error condition
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-35

CICS
CICS Command Parameters

Services marked as dependent require that BBI-SS PAS to CICS
communication is active. Refer to the MAINVIEW AutoOPERATOR
Customization Guide for details.

Table 12-4 CICS Command Parameters

Command Function Dependent Page

ACQUIRE Acquire a VTAM-supported terminal Yes 12-38

ALLOC Allocate a data set Yes 12-40

ALTER Alter a CICS task-related value Yes 12-41

ALTERVS Alter virtual storage No 12-48

CEMT Issue a CICS extended master terminal command Yes 12-49

CHAP Change a task’s priority Yes 12-51

CICSKEY Change CICSKEY settings for CIS transactions No 12-52

CLOSE Close a file Yes 12-53

CONN Alters the status of IRC/ISC connections Yes 12-54

DISABLE Disable a resource Mixed1 12-55

DROP Decrease the use count of a program Yes 12-57

DUMPDB Prepare a database for dumping Yes 12-58

ENABLE Enable a resource Mixed1 12-59

FREE Deallocate a file Yes 12-61

INSERVE Place a resource in service Yes 12-62

ISOLATE Change ISOLATE settings for CIS transactions No 12-63

KILL TASK Terminate a CICS task by task number Mixed1 12-64

KILL TERM Terminate a CICS task by terminal Yes 12-64

LOAD Load a program Yes 12-67

NEWCOPY Load a new version of program Yes 12-68

OPEN Open a file Yes 12-69

OUTSERVE Take a resource out of service Yes 12-70

PURGE Purge a resource Yes 12-71

QUERY Invoke a MAINVIEW for CICS service No 12-73

RECOVERDB Prepare a database for recovery Yes 12-79

RELEASE
TERMINAL

Release a VTAM terminal Yes 12-80

SPURGE Change the SPURGE value for a CICS transaction No 12-81

STARTDB Start a database Yes 12-82

STOPDB Stop a database Yes 12-83
BMC Software, Inc., Confidential and Proprietary Information

12-36 MAINVIEW AutoOPERATOR Advanced Automation Guide

CICS
1 Some common options are dependent. Refer to the description of each
command for more information.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-37

CICS
CICS ACQUIRE

 This command issues a VTAM request to acquire a terminal.

The following table describes the parameters.

Note: BBI-SS PAS to CICS communication must be active.

Example

The commands in this example acquire terminals following CICS startup
without needing to specify CONNECT=AUTO in the Terminal Control Table
(TCT). WAIT was specified to minimize the impact on CICS processing.

/* REXX */
"IMFEXEC CICS ACQUIRE TERMINAL AB00"
"IMFEXEC CICS ACQUIRE TERMINAL AB01"
"IMFEXEC CICS ACQUIRE TERMINAL AC00"
"IMFEXEC CICS ACQUIRE TERMINAL AC01"
 .
 .
 .
"IMFEXEC WAIT 5
"IMFEXEC CICS ACQUIRE TERMINAL BA11"
"IMFEXEC CICS ACQUIRE TERMINAL BA12"

Command Parameters

CICS ACQUIRE TERMINAL
Terminal identifier

Parameter Function Notes

Terminal The terminal to be acquired 1- to 4-alphanumeric.
If you use generics for the terminal ID
name, a maximum of only 200 discrete
commands are executed.
BMC Software, Inc., Confidential and Proprietary Information

12-38 MAINVIEW AutoOPERATOR Advanced Automation Guide

CICS
CLIST EXEC example:

IMFEXEC CICS ACQUIRE TERMINAL AB00
IMFEXEC CICS ACQUIRE TERMINAL AB01
IMFEXEC CICS ACQUIRE TERMINAL AC00
IMFEXEC CICS ACQUIRE TERMINAL AC01
 .
 .
 .
IMFEXEC WAIT 5
IMFEXEC CICS ACQUIRE TERMINAL BA11
IMFEXEC CICS ACQUIRE TERMINAL BA12
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-39

CICS
CICS ALLOC

CICS ALLOC

This command allocates a file or data set to either the CICS region or to the
BBI-SS PAS. The allocation is done shared (DISP=SHR).

The following table describes the parameters.

Example

This example command allocates a data set that has previously been freed for
batch processing.

/* REXX */
"IMFEXEC CICS ALLOC MASTER TO USER.VSAM.MASTER"

CLIST EXEC example:

IMFEXEC CICS ALLOC MASTER TO USER.VSAM.MASTER

Command Parameters

CICS ALLOC Filename
[TO]
dsname
[LOCAL]

Parameter Function Notes

Filename The DD Name of the file to allocate Length can be 1- to 8 alphanumeric.
An FCT entry is not needed.

TO Readability token

DSName Name of data set to allocate 1-44 characters alphanumeric.

LOCAL Forces allocation to the BBI-SS PAS
instead of the CICS region
BMC Software, Inc., Confidential and Proprietary Information

12-40 MAINVIEW AutoOPERATOR Advanced Automation Guide

CICS
CICS ALTER

 Using this command, you can change the attribute values for different CICS
resources as documented in the following tables.

Note: For CICS/ESA 4 and above, BBI-SS PAS to CICS communication
must be active

The following table describes the parameters.

 Command Parameters

CICS ALTER MAXTASK | ICV | ICVR | CLASSn | TCLASS | SYSTEM | DUMPDS | TCPIPSERVICE |
JVMPOOL | DUMPCODE

Table 12-5 CICS ALTER Command Parameters

Parameter Function Notes

MAXTASK Specifies the maximum number of
tasks, active and suspended, allowed
in the CICS address space
concurrently.
Example:

"IMFEXEC CICS ALTER MAXTASK 35"
/* Allow only 35 tasks to run */

Values can be 1 - 999.

ICV Specifies the region exit interval value
in milliseconds.
Example:

"IMFEXEC CICS ALTER ICV 1000"
/*Come back from OS after 1 second*/

Values can be 100 - 3600000.

ICVR Specifies the runaway interval in
milliseconds.
Example:

"IMFEXEC CICS ALTER ICVR 5000"
/* If it runs longer than 5 seconds, it is looping */

Values can be 500 - 2700000.

CLASS1 - CLASS10 Specifies the largest number of tasks
in this class that can be active
concurrently.
Example:

"IMFEXEC CICS ALTER CLASS1 10"
/* Allow only 10 tasks in this class */

Values can be 1 - 999.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-41

CICS
TCLASS class
MAXACTIVE value |
PURGETHRESH
value

Reset the maximum number of tasks
or the purge threshold for a
transaction class.
Example 1:

"IMFEXEC CICS ALTER TCLASS DFHTCL05
MAXACTIVE 200"
/* Only allow 200 tasks to
run */
Example 2:

"IMFEXEC CICS ALTER TCLASS DFHTCL05
PURGETHRESH 1000"
/* Only allow 1000 tasks to queue up */

Possible attributes and values are
Class
Any valid 1 - 8 character transaction class
name. The word class is not a keyword. It
indicates where the positional parameter
class name is specified.
MAXACTIVE Value
Valid values can be 0 - 999. Cannot be
specified with PURGETHRESH. After the
value for class, specify MAXACTIVE followed
by a value.
PURGETHRESH Value
Valid values can be 0 - 1000000. Cannot be
specified with MAXACTIVE. After the value
for class, specify PURGETHRESH followed
by a value. Only one attribute can be
changed per execution of the statement. You
cannot change both the MAXACTIVE and
the PURGETHRESH attribute with the same
statement.
ALTER TCLASS is only available for CTS 1.3
and later.

Table 12-5 CICS ALTER Command Parameters (continued)

Parameter Function Notes
BMC Software, Inc., Confidential and Proprietary Information

12-42 MAINVIEW AutoOPERATOR Advanced Automation Guide

CICS
SYSTEM attribute
value
Possible attributes
are
AKP
DSALIMIT
DTRPROGRAM
DUMPING
EDSALIMIT
FORCEQR
PROGAUTOINST
PROGAUTOCTLG
PROGAUTOEXIT
PRTYAGING
RUNAWAY
SCANDELAY
TIME

Issues commands to change certain
CICS system attributes. Attribute
specifies the system attribute and
value is the desired value.
Example 1:

 "IMFEXEC CICS ALTER SYSTEM DUMPING
NO"
 /* This command disallows dumps */
Example 2:

"IMFEXEC CICS ALTER SYSTEM DSALIMIT
8388608"
 /* Set DSA limit to 8 megabytes*/
Example 3:

"IMFEXEC CICS ALTER SYSTEM EDSALIMIT
500M"
 /* Set EDSA limit to 500 megabytes */
Example 4:

"IMFEXEC CICS ALTER SYSTEM EDSALIMIT
1G"
 /* Set EDSA limit to 1 gigabytes */

Possible attributes and values are

AKP
Valid range is 200 - 65535. Specifies the
activity keypoint trigger value, which is the
number of write requests to the CICS system
log stream output buffer between the
keypoints. The value 0 is also valid and
specifying it turns off keypoints.

DSALIMIT
Valid values are 2MB - 16MB. Specifies the
maximum amount of dynamic storage area
CICS can allocate below the 16 megabyte
line. Values can be specified in bytes,
kbytes or mbytes by appending K or M to the
end of the value, or by leaving a blank for
bytes.

DTRPROGRAM
Specifies the Dynamic Routing program
name.

DUMPING
Valid values are YES and NO. Indicates
whether CICS system dumps can be taken.

EDSALIMIT
Valid values are 10M - 2G. Specifies the
maximum amount of dynamic storage area
CICS can allocate above the 16 megabyte
line. Values can be specified in bytes, kbytes,
mbytes or gbytes by appending K, M or G to
the end of the value, or by leaving blank for
bytes.

FORCEQR
Valid values are FORCE and NOFORCE.
Specifies whether you want CICS to force all
user application programs specified as
CONCURRENCY(THREAD-SAFE) to run
under the CICS QR TCB, as if they were
specified as CONCURRENCY(QUASIRENT)
programs. SYSTEM FORCEQR is available
only for CTS 1.3 and later.

Table 12-5 CICS ALTER Command Parameters (continued)

Parameter Function Notes
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-43

CICS
SYSTEM attribute
value
(Continued)

See the CICS System Programming
Reference Guide for more information.

PROGAUTOINST
Valid values are ACTIVE and INACTIVE.
Specifies whether auto install for programs is
to be active or inactive.

PROGAUTOCTLG
Valid values are NONE, ALL or MODIFY.
Specifies which auto installed program
definitions are to be cataloged and when.
Definitions are to be cataloged only when
modified.

PROGAUTOEXIT
Specifies the name of the user-provided
program to be called by the CICS program
autoinstall code to provide a model definition.

PRTYAGING
Valid values are between 0 and 65535 (in
milliseconds). Specifies the rate at which
CICS is to increase the priority of a task
waiting for dispatch.

RUNAWAY
Valid values are between 500 and 2700000
(in milleseconds). Specifies the default for
runaway task time.

SCANDELAY
Valid values are 0 to 5000 (in milliseconds).
Specifies the maximum number of
milliseconds between a user task making a
terminal I/O request and CICS dispatching
the terminal control task to process it.

TIME
Valid values are in the range 100 - 3600000.
Specifies the maximum interval in
milliseconds for which CICS gives control to
the operating system if no tasks are ready for
dispatch. Only one attribute can be changed
per execution of the statement. You will need
to code multiple statements in order to
change multiple attributes.

Table 12-5 CICS ALTER Command Parameters (continued)

Parameter Function Notes
BMC Software, Inc., Confidential and Proprietary Information

12-44 MAINVIEW AutoOPERATOR Advanced Automation Guide

CICS
DUMPDS attribute
value
Possible attributes
are
DATASET
INITIALDDS
OPENSTATUS
SWITCHSTATUS

Changes the attributes of the CICS
dump data set.
Example 1:

"IMFEXEC CICS ALTER DUMPDS
OPENSTATUS OPEN"
/* This command opens the active dump data set
*/

Example 2:

"IMFEXEC CICS ALTER DUMPDS INITIALDDS
AUTO"
/* Next warm start use whichever data set not
used last */

Possible attributes and values are

DATASET
Valid values are A and B. Specifies current
dump data set.

INITIALDDS
Specifies which dump data set is to be active
first on subsequent warm or emergency
restarts. Valid values are A, B and AUTO.
AUTO indicates to use the data set that was
not active when CICS last terminated
(normally or abnormally).

OPENSTATUS
Valid values are OPEN and CLOSE.
Specifies actions to be taken on the
transaction dump data sets.

SWITCHSTATUS
Valid values are NO and NEXT. Specifies
whether CICS is to switch active data sets
automatically the next time the current dump
data set fills up.

TCPIPSERVICE
service attribute
value
Possible attributes
are
BACKLOG
DNSSTATUS
STATUS
URM

Modify the status of a service using
CICS internal TCP/IP support.
Example 1:

 "IMFEXEC CICS ALTER TCPIPSERVICE
PRINTER STATUS CLOSE"
/* Close printer service */

Possible attributes and values are

BACKLOG
Changes the maximum number of requests
that can be queued in TCP/IP waiting to be
processed by the service. Specify service
name followed by BACKLOG followed by
value.

DNSSTATUS
Valid values are REGISTERED and
DEREGISTERED. Changes the Domain
Name System (DNS)/Workload Manager
(WLM) registration status of this service.
Specify service name followed by
DNSSTATUS followed by value.

STATUS
Valid values are OPEN, CLOSE and
IMMCLOSE. Changes the status of the
service. Specify service name followed by
STATUS followed by value.

URM
Specifies the 8-character name of the
program to be used as the Service
User-replaceable module. Specify service
name followed by URM followed by value.
ALTER TCPIPSERVICE is only available for
CTS 1.3 and later.

Table 12-5 CICS ALTER Command Parameters (continued)

Parameter Function Notes
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-45

CICS
JVMPOOL attribute
value
Possible attributes
are
STATUS
TERMINATE

Enable or disable the JVM pool, or
terminate the pool altogether.
Example 1:

 "IMFEXEC CICS ALTER JVMPOOL STATUS
DISABLED"
 /* No new requests are allowed */

Example 2:

"IMFEXEC CICS ALTER JVMPOOL TERMINATE
PURGE"
/*Purge all the tasks */

Possible attributes and values are

STATUS
Valid values are ENABLED and DISABLED.
Specifies whether new Java requests can be
accepted and serviced by the JVM pool.

TERMINATE
Valid values are PHASEOUT, PURGE and
FORCEPUR. Specifies that the JVM pool is
to be terminated.
ALTER JVMPOOL is only available for CTS
2.1 and later.

Table 12-5 CICS ALTER Command Parameters (continued)

Parameter Function Notes
BMC Software, Inc., Confidential and Proprietary Information

12-46 MAINVIEW AutoOPERATOR Advanced Automation Guide

CICS
Example

Examples are located in the Parameters table with the description of each
keyword. By removing the quotation marks, these examples can be used in
CLIST EXECs.

DUMPCODE type
name

Issue commands to change certain
attributes of system and transaction
level dump codes in CICS. Type
specifies SYSTEM or TRAN, and
name specifies the name of your dump
code.
Example 1:
“IMFEXEC CICS ALTER DUMPCODE SYSTEM
AP0001 SHUTDOWN YES” /* Shut down the
system when this abend code occurs */

Example 2:
“IMFEXEC CICS ALTER DUMPCODE TRAN
ASRA MAXIMUM 200” /* Set the maximum
number of dumps with this code to be taken */

Example 3:
“IMFEXEC CICS ALTER DUMPCODE TRAN
AZCT SCOPE RELATED” /* Dump other CICS’ in
SYSPLEX that are connected to this region with
the same UOW */

Example 4:
“IMFEXEC CICS ALTER DUMPCODE SYSTEM
AP0001 DAE YES” /* The dump is eligible for
dump suppression */

Possible attribute and values are

RESET
Reset to zero the number of dumps taken for
this dump code. No further parameters are
necessary.

SHUTDOWN value
Specify YES or NO to indicate whether the
CICS region should shut down after request
for a dump with this code.

MAXIMUM value
Specify the maximum number of dumps to
be taken for this dump code. Value can be a
number between 0 and 999.

SCOPE value
Specify whether a request for a dump with
this dump code should cause CICS to initiate
requests for SDUMPs (system dumps) of
"related" CICS regions. Valid values are
RELATED and LOCAL.

SYSDUMP value
Specify whether a system dump request with
this code should produce a dump. Valid
values are YES and NO.

TRANDUMP value
Specify whether a transaction dump should
be taken when a transaction dump request
with this code is received. Valid values are
YES and NO. This parameter is valid for
transaction dump codes only.

DAE value
Specify whether a dump produced for this
dump code is eligible for suppression by the
MVS Dump Analysis and Elimination (DAE)
component. Valid values are YES and NO.
This parameter is valid for system dump
codes only.

Table 12-5 CICS ALTER Command Parameters (continued)

Parameter Function Notes
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-47

CICS
CICS ALTERVS

 This command allows changing of the contents of memory located at the
specified virtual address.

The following table describes the parameters.

Example

This example command zeroes out a field known to be in a specific location
in a control block or program.

/* REXX */
"IMFEXEC CICS ALTERVS 00031F14 FROM 01080000 TO 00000000"

CLIST EXEC example:

IMFEXEC CICS ALTERVS 00031F14 FROM 01080000 TO 00000000

Command Parameters

CICS ALTERVS Address
[FROM]
Value1
[TO]
Value2

Parameter Function Notes

Address A virtual storage address 8 hexadecimal digits (4 bytes).

FROM Readability token Used primarily for documentation
purposes; however, it must be different
from the TO value to cause the storage to
be altered.

Value1 Current memory contents at the
designated virtual storage address

8 hexadecimal digits.

TO Readability token

Value2 Replaces the current contents of memory
at the specified virtual storage address
with a new hexadecimal value

8 hexadecimal digits (4 bytes).
BMC Software, Inc., Confidential and Proprietary Information

12-48 MAINVIEW AutoOPERATOR Advanced Automation Guide

CICS
CICS CEMT

This command issues a CICS CEMT request.

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Example

This example command switches dump data sets.

/* REXX */
"IMFEXEC CICS CEMT SET DUMP SWI"

or

 /* REXX */
 "IMFEXEC CICS CEMTQ SET DUMP SWI"

Command Parameters

CICS CEMT | CEMTQ Mttran
The maximum length of parameters (including blanks) and subcommands (such
as SET and INQUIRE) is 72 characters.
By default, the output from the CEMT command is written to the BBI journal. If
you many CEMT commands consecutively or over time, it can produce a great
deal of unwanted data in the BBI journal. To avoid this overload of information,
you can use the CEMTQ command instead of CEMT. All parameters are
specified exactly as with CEMT. The difference is that the output will not be
written to the BBI journal.

Parameter Function Notes

Mttran Is a CICS master terminal command
initiated from an EXEC as a CEMT
request

The command can be issued using the
MVS command facility (CMD) if the
console used is defined to CICS in the
CICS Terminal Control Table.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-49

CICS
CLIST EXEC example:

IMFEXEC CICS CEMT SET DUMP SWI

or

IMFEXEC CICS CEMTQ SET DUMP SWI
BMC Software, Inc., Confidential and Proprietary Information

12-50 MAINVIEW AutoOPERATOR Advanced Automation Guide

CICS
CICS CHAP

 This command causes a dynamic change to the priority of an active task.

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Example

This example command assigns a dispatching priority of 232 to task 8756.

/* REXX */
"IMFEXEC CICS CHAP 8756 232"

CLIST EXEC example:

IMFEXEC CICS CHAP 8756 232

 Command Parameters

CICS CHAP Taskno
Priority

 Parameter Function Notes

Taskno Number of the currently active task to
modify

Decimal numeric value in CICS allowable
range.
This number can be obtained by using the
IMFEXEC QUERY command (this
requires MAINVIEW for CICS to be
installed). Looping transactions running at
a dispatching priority of 255 sometimes
cannot be changed.

New priority The priority to assign to this task Numeric value in the range 0-255.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-51

CICS
CICS CICSKEY

 This command changes CICSKEY settings for CICS transactions.

The following table describes the parameters.

Example 1

This example command sets the TASKDATAKEY of the CICS CEMT to
CICS.

/*REXX */
"IMFEXEC CICS CICSKEY CEMT YES"

CLIST EXEC example:

IMFEXEC CICS CICSKEY CEMT YES

Example 2

This example command sets the TASKDATAKEY of the CICS CEMT to
USER.

/*REXX */
"IMFEXEC CICS CICSKEY CEMT NO"

CLIST EXEC example:

IMFEXEC CICS CICSKEY CEMT NO

 Command Parameters

CICS CICSKEY Tran ID .br;[YES|NO]

 Parameter Function Notes

Tran ID The name of a CICS transaction

[YES|NO] Can be set to YES or NO
BMC Software, Inc., Confidential and Proprietary Information

12-52 MAINVIEW AutoOPERATOR Advanced Automation Guide

CICS
CICS CLOSE

 This command closes one file in the CICS region.

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Example

This example command closes a CICS file.

/* REXX */
"IMFEXEC CICS CLOSE P001"

CLIST EXEC example:

IMFEXEC CICS CLOSE P001

 Command Parameters

CICS CLOSE Filename

Parameter Function Notes

Filename The filename of the file to close 1- to 8-alphanumeric file name defined in
the CICS File Control Table (FCT).
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-53

CICS
CICS CONN

 This command alters the status of IRC/ISC connections.

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Example

This example command puts a connection in service.

/* REXX */
"IMFEXEC CICS CONN SYSID IN"

CLIST EXEC example:

IMFEXEC CICS CONN SYSID IN

Command Parameters

CICS CONN SYSID
IN
OUT
ACQ
REL
NOTPEND
PURGE

Parameter Function Notes

SYSID Is the CICS SYSID for the MRO/ISC
connection

Values can be:
INservice
Puts the connection into service
OUTservice
Takes the connection out of service
ACQuire
Acquires a connection
RELease
Releases a connection
NOTPEND
Makes a connection not pending
PURGE
Purges a connection
BMC Software, Inc., Confidential and Proprietary Information

12-54 MAINVIEW AutoOPERATOR Advanced Automation Guide

CICS
CICS DISABLE

 This command makes a resource unavailable to applications, except for
those currently using it.

The following table describes the parameters.

Command Parameters

CICS DISABLE FILE|TRAN|PROGRAM|DEST
Identifier

Parameter Function Notes

Type The type of resource to affect Values are

FILE
A file
Note: BBI-SS PAS to CICS
communication must be active.

TRAN
A CICS transaction

PROGRAM
A CICS application program

DEST
A transient data queue

Identifier The resource ID for each type Values are

file id
Identifier is a 1- to 8-alphanumeric file
name

tran id
Identifier is a 1- to 4-alphanumeric
transaction name

program id
Identifier is a 1- to 8-alphanumeric
program name

dest id
Identifier is a 1- to 4-character queue
name defined in the Destination Control
Table (DCT)
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-55

CICS
Example

This example command disables a CICS transaction.

/* REXX */
"IMFEXEC CICS DISABLE TRAN ABRW"

CLIST EXEC example:

IMFEXEC CICS DISABLE TRAN ABRW
BMC Software, Inc., Confidential and Proprietary Information

12-56 MAINVIEW AutoOPERATOR Advanced Automation Guide

CICS
CICS DROP

 This command decreases the use-count of a program.

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Example

This example command decreases the use-count of the program DSPFILE.

/* REXX */
"IMFEXEC CICS DROP DSPFILE"

CLIST EXEC example:

IMFEXEC CICS DROP DSPFILE

 Command Parameters

CICS DROP Program name

Parameter Function Notes

Identifier A CICS program identifier 1- to 8-character ID of the program
affected. After a program use-count
reaches 0, it is eligible to be removed by
CICS program compression. You should
be careful to avoid dropping, and
potentially removing, programs that are
actually in use by executing transactions.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-57

CICS
CICS DUMPDB

This command prepares a database for dumping by preventing updates so a
backup job can be run in another region.

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Example

This example command prepares the database STD2XCP for batch updates.

REXX EXEC example:

/* REXX */
"IMFEXEC CICS DUMPDB STDCX2P"

CLIST EXEC example:

IMFEXEC CICS DUMPDB STDCX2P

 Command Parameters

CICS DUMPDB Database name

Parameter Function Notes

Database Database identified in the Data
Management Block Directory (DMB)

1- to 8-character name of the database.
BMC Software, Inc., Confidential and Proprietary Information

12-58 MAINVIEW AutoOPERATOR Advanced Automation Guide

CICS
CICS ENABLE

 This command makes a resource available for use.

The following table describes the parameters.

 Command Parameters

CICS ENABLE FILE|TRAN|PROGRAM|DEST
Identifier

Parameter Function Notes

Type The type of resource to affect Values are

FILE
A file
Note: BBI-SS PAS to CICS
communication must be active.

TRAN
A CICS transaction

PROGRAM
A CICS application program

DEST
A transient data queue

Identifier The resource ID for each type Values are

file id
Identifier is a 1- to 8-alphanumeric file
name

tran id
Identifier is a 1- to 4-alphanumeric
transaction name

program id
Identifier is a 1- to 8-alphanumeric
program name

dest id
Identifier is a 1- to 4-character queue
name defined in the Destination Control
Table (DCT)
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-59

CICS
Example

This example command enables the CICS transaction ABRW.

/* REXX */
"IMFEXEC CICS ENABLE TRAN ABRW"

CLIST EXEC example:

IMFEXEC CICS ENABLE TRAN ABRW
BMC Software, Inc., Confidential and Proprietary Information

12-60 MAINVIEW AutoOPERATOR Advanced Automation Guide

CICS
CICS FREE

 This command deallocates a file from the CICS region or BBI-SS PAS.

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Example

These example commands close and deallocate a data set.

/* REXX */
"IMFEXEC CICS CLOSE MASTER"
"IMFEXEC CICS FREE MASTER"

CLIST EXEC example:

IMFEXEC CICS CLOSE MASTER
IMFEXEC CICS FREE MASTER

Command Parameters

CICS FREE Filename
[LOCAL]

Parameter Function Notes

Filename The DD Name of the file to deallocate 1- to 8 alphanumeric.
DISABLE FILE and CLOSE commands for
the data set must be issued before FREE.
The name does not need to be one that is
specified in the CICS FCT, but the file
must be closed to be freed.

LOCAL Forces deallocation from the BBI-SS PAS
instead of the CICS region
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-61

CICS
CICS INSERVE

 This command puts a terminal, line, or control unit in service.

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Example

This example command makes all terminals with IDs that begin with SC
available for use.

/* REXX */
"IMFEXEC CICS INSERVE TERMINAL SC*"

CLIST EXEC example:

IMFEXEC CICS INSERVE TERMINAL SC*

Command Parameters

CICS INSERVE TERMINAL|LINE|CONTROLLER
Identifier

 Parameter Function Notes

Type The type of resource to modify One of the following:

TERMINAL

LINE

CONTROLLER
If you use generics for the terminal ID
name, a maximum of only 200 discrete
commands are executed.

Identifier ID of the terminal, line, or controller 1-4 characters.
The ID of a line or a controller cannot be
specified as a generic.
BMC Software, Inc., Confidential and Proprietary Information

12-62 MAINVIEW AutoOPERATOR Advanced Automation Guide

CICS
CICS ISOLATE

 This command changes ISOLATE settings for CICS transactions.

The following table describes the parameters.

Example 1

This example command sets CICS CEMT to ISOLATE(YES).

/* REXX */
"IMFEXEC CICS ISOLATE CEMT YES"

CLIST EXEC example:

IMFEXEC CICS ISOLATE CEMT YES

Example 2

This example command sets CICS CEMT to ISOLATE(no).

/* REXX */
"IMFEXEC CICS ISOLATE CEMT NO"

CLIST EXEC example:

IMFEXEC CICS ISOLATE CEMT NO

Command Parameters

CICS ISOLATE Tran ID
[YES|NO]

Parameter Function Notes

Tran ID The name of a CICS transaction

[YES|NO] Can be set to YES or NO
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-63

CICS
CICS KILL

This command terminates a CICS task identified by a CICS task number or
identified by the CICS terminal it is attached to.

Note: When this command is used on a task running in a CICS/ESA region,
the task’s system purge mask is turned on (SPURGE set to YES)
prior to execution of the command.

The table describing the IMFEXEC CICS KILL TASK command statement
parameters is on page 12-64 and the table describing the IMFEXEC CICS
KILL TERM command statement parameters is on page 12-65.

CICS KILL TASK

The following table describes the parameters for the IMFEXEC CICS KILL
TASK command statement.

Command Parameters

CICS KILL TASK
Task number
[WITH DUMP]
[FORCE|PURGE|FORCEPURGE]

TERMINAL
Terminal ID
[PURGE|FORCEPURGE]

Parameter Function Notes

Task number The number of the task affected A CICS-assigned task number from 1 to
99999.

WITH Readability token The WITH parameter works only with
DUMP.
BMC Software, Inc., Confidential and Proprietary Information

12-64 MAINVIEW AutoOPERATOR Advanced Automation Guide

CICS
CICS KILL TERM

The following table describes the parameters for the IMFEXEC CICS KILL
TERM command statement.

Note: BBI-SS PAS to CICS communication must be active.

Type Type of abnormal termination desired One of the following:

DUMP
If the integrity of the CICS region can be
maintained, the task is abnormally ended
with a dump.

FORCE
Forces a looping task to abend with a
dump, regardless of integrity exposure.
Expect to use this service more than once
on a multiprocessor for a task in a loop.
CAUTION: This can cause the CICS
region to abend.

PURGE
Purges a task using the services of the
CICS supplied transaction CEMT.

FORCEPURGE
PURGE a task using the services of the
CICS supplied transaction CEMT using
the FORCE parameter.
Note: BBI-SS PAS to CICS
communication must be active to use the
PURGE and FORCEPURGE parameters.
If only the task number is specified, the
task is abnormally terminated if the
integrity if the CICS region can be
maintained. A dump is produced.

Parameter Function Notes

Terminal ID The terminal that the task is attached to

Type Type of abnormal termination desired One of the following:

PURGE
Purges a task using the services of the
CICS supplied transaction CEMT.

FORCEPURGE
PURGE a task using the services of the
CICS supplied transaction CEMT using
the FORCE parameter.

Parameter Function Notes
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-65

CICS
Examples

This section contains an example using the IMFEXEC CICS KILL TASK
and IMFEXEC CICS KILL TERM command statements. A brief discussion
follows the example.

Example 1 - IMFEXEC CICS KILL TASK

When coded within an EXEC driven off the message FT041S, this command
kills a task when the message:

FT04IS TRAN xxx TASK yyyy USING zzzK BYTES

is logged to the online Journal. The task ID is contained in the P004 variable.

/* REXX */
"IMFEXEC CICS KILL TASK 0004"

CLIST EXEC example:

IMFEXEC CICS KILL TASK 0004

Example 2 - IMFEXEC CICS KILL TERM

This example terminates the CICS task that is attached to terminal BSA4.

REXX EXEC example:

/* REXX */
"IMFEXEC CICS KILL TERM BSA4"

CLIST EXEC example:

IMFEXEC CICS KILL TERM BSA4
BMC Software, Inc., Confidential and Proprietary Information

12-66 MAINVIEW AutoOPERATOR Advanced Automation Guide

CICS
CICS LOAD

 This command increases the use-count of a program.

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Example

This example command increases the use count of the program named
PROGX470.

/* REXX */
"IMFEXEC CICS LOAD PROGX470"

CLIST EXEC example:

IMFEXEC CICS LOAD PROGX470

Command Parameters

CICS LOAD Program name

 Parameter Function Notes

Identifier The name of the affected program 1- to 8-character alphanumeric. If a
program is not currently resident in CICS
storage, it will be loaded. Unless the use
count is specifically decreased with the
DROP transaction or through CICS
services, the program stays permanently
loaded until CICS terminates.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-67

CICS
CICS NEWCOPY

This command marks the program name in the PPT nonresident and
refreshes its disk address to prepare for a newly link-edited version or
restoration of that program.

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Example

This example command refreshes the CICS copy of a program named PGM1.

/* REXX */
"IMFEXEC CICS NEWCOPY PGM1"

CLIST EXEC example:

IMFEXEC CICS NEWCOPY PGM1

Command Parameters

CICS NEWCOPY Program name

 Parameter Function Notes

Program The program to refresh 1- to 8 alphanumeric.
BMC Software, Inc., Confidential and Proprietary Information

12-68 MAINVIEW AutoOPERATOR Advanced Automation Guide

CICS
CICS OPEN

 This command opens a file in the CICS region.

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Example

These example commands allocate and open a data set.

/* REXX */
"IMFEXEC CICS ALLOC MAIN1 TO USERV.MAIN1.CLUSTER"
"IMFEXEC CICS OPEN MAIN1"

CLIST EXEC example:

IMFEXEC CICS ALLOC MAIN1 TO USERV.MAIN1.CLUSTER
IMFEXEC CICS OPEN MAIN1

Command Parameters

CICS OPEN File name

Parameter Function Notes

Filename The name of the FCT entry to open 1- to 8 characters alphanumeric file name.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-69

CICS
CICS OUTSERVE

 This command takes a terminal, line, or control unit out of service.

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Example

This example command keeps all terminals with IDs that begin with T and
end with S from being used.

/* REXX */
"IMFEXEC CICS OUTSERVE TERMINAL T++S"

CLIST EXEC example:

IMFEXEC CICS OUTSERVE TERMINAL T++S

Command Parameters

CICS OUTSERVE TERMINAL|LINE|CONTROLLER
Identifier

Parameter Function Notes

Type The type of resource to modify One of the following:
TERMINAL
LINE
CONTROLLER
If you use generics for the terminal ID
name, a maximum of only 200 discrete
commands are executed.

Identifier ID of the terminal, line, or controller 1-4 characters.
The ID of a line or a controller cannot be
specified as a generic.
BMC Software, Inc., Confidential and Proprietary Information

12-70 MAINVIEW AutoOPERATOR Advanced Automation Guide

CICS
CICS PURGE

 This command terminates a CICS resource

BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Command Parameters

CICS PURGE TSUT|ICE|DEST|AID

 Parameter Function Notes

TSUT value or
value HEX

Purges a temporary storage unit from the
CICS system.

Can be up to 16 characters or a 32
character representation of a 16-byte
hexadecimal number.
The maximum depends on the CICS
release.
Example 1:

"IMFEXEC CICS PURGE TSUT PAYROLL1"

Example 2:

"IMFEXEC CICS PURGE TSUT 1C3A773B HEX"
/* Purge the binary TSUT with binary ID 1C3A773B */

ICE value Purges an interval control element from
the CICS system.

Can be up to 8 characters or a 16
character representation of an 8-byte
hexadecimal number.
Example 1:

"IMFEXEC CICS PURGE ICE DELAY"

Example 2:

"IMFEXEC CICS PURGE ICE 3C0000FF00001000”
/* Purge the binary ICE with binary ID
3C0000FF00001000 */

DEST value Deletes the CICS Transient Data queue. Up to 4 character queue name allowed.
Example:
"IMFEXEC CICS PURGE DEST DEVL" /* Delete the
development queue */

AID value termed Purges an Automatic Initiation Descriptor
from the CICS system.

Can be up to 8 characters or a 16
character representation of an 8-byte
hexadecimal number.
Example:

"IMFEXEC CICS PURGE AID 3C0000FF00001000
L287 TRN1"
/* Purge the AID for terminal L287 transaction TRN1 */
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-71

CICS
Example

Examples are located in the Parameters table with the description of each
keyword. By removing the quotation marks, these examples can be used in
CLIST EXECs.
BMC Software, Inc., Confidential and Proprietary Information

12-72 MAINVIEW AutoOPERATOR Advanced Automation Guide

CICS
CICS QUERY

This command invokes MAINVIEW for CICS interactive services, such as
SUMMARY, MONITOR, PROBLEM, SUBPOOL, and so on.

QUERY is executed on behalf of the target CICS system. When QUERY is
used, data normally sent to the terminal is written into variables that the
EXEC can analyze. The output returned from the command is written into
the LOCAL variables LINE1 through LINExx, which correspond to the lines
of the screen image.

The variable IMFNOL contains the number of lines of output. These
variables need to be retrieved using the VGET statement before they can be
used.

The output is similar to output produced through the same service of a
MAINVIEW for CICS terminal session, but this output does not have screen
attributes in the variables. The returned data does not contain the header
lines, which are displayed when invoking the service under the TS (unless
they contain variable data).

Some applications that are accessible through the QUERY command are
scrollable applications and therefore need to be accessed more than once to
retrieve all the data. For all scrollable applications, except the TASK display,
a parameter is passed to the QUERY command that contains the resource
name of the last resource on the screen. This action causes the data to be
returned, starting with the resource specified by the parameter. To return all
of the data for the TASK display, a special parameter (/FWDnnnn, where
nnnn is a numeric value) is provided. The Exec should test the variable that
contains the number of lines returned (IMFNOL), and if at least 23 lines were
returned, an attempt is made to scroll forward by using the /FWDnnnn
parameter on subsequent calls. See “Example 1” on page 12-74.

You might need to experiment with the correct offsets to use when sub-
stringing particular items. Changes to MAINVIEW for CICS display formats
might affect EXECs that process this data.

For most MAINVIEW for CICS services, two header lines are omitted before
the data is returned in the LOCAL variables. There are some exceptions to
this standard.

One exception is those services that contain variable data in one of the header
lines. For these services, the header line containing the variable data and all
subsequent lines are returned.

 Command Parameters

CICS QUERY Command
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-73

CICS
Another exception is those services which contain either one or two blank
header lines. For these services, the header lines are not returned at all.
However, all blanks that might be interspersed within the detail lines of a
specific display are passed to the EXEC. You must accommodate for these
lines in the EXEC.

The following table describes the parameters.

Example 1

This example demonstrates how to use the QUERY command to gather CICS
subpool information. A brief discussion follows the example.

REXX EXEC example:

/* REXX */
"IMFEXEC CICS QUERY SUBPOOL"
/* DSA PERCENTAGE IS NOW IN MSG #2, COLUMNS 14-16 */
"IMFEXEC VGET LINE2 LOCAL"
DSAPERC = SUBSTR(LINE2,14,2)
IF DSAPERC < 50 THEN CALL LOKAY

CLIST EXEC example:

IMFEXEC CICS QUERY SUBPOOL
/* DSA PERCENTAGE IS NOW IN MSG #2, COLUMNS 14-16 */
IMFEXEC VGET LINE2 LOCAL
SET DSAPERC = SUBSTR (14:16,LINE2)
IF DSAPERC < 50 THEN GOTO LOKAY

This sample command shows an EXEC that interprets the DSA utilization
percentage. This command could be used to influence decisions that are
made within an EXEC that is invoked when message FT041S (task using
excessive storage) is issued.

 Parameter Function Notes

Command A MAINVIEW for CICS service request,
referred to in format descriptions in the
MAINVIEW for CICS Online Services
Reference Manual

 No quotes are required around this
operand.
BMC Software, Inc., Confidential and Proprietary Information

12-74 MAINVIEW AutoOPERATOR Advanced Automation Guide

CICS
Example 2

This example demonstrates how to use the QUERY command to gather data
from a scrollable application (other than the Task display). This EXEC is
called from the BBI journal or another EXEC or Rule.

Example from the BBI journal: %CICSFILE CICSPROD

REXX EXEC example:

----------------------------REXX----------------------------/
/* REXX exec to count the number of files with zero updates */
/* and return a message to the BBI journal indicating that */
/* number. */
/*---*/
arg name region pad
"IMFEXEC SETTGT ’"region"’"
count = ’0’ /* Init counter */
lastscreen = 0 /* Init flag */
notfirst = 0 /* Set first call */
fname = ’’ /* Null for first call */

"IMFEXEC VDCL FILEDATA LIST(name type status lsr read add update",
"getupd browse delete)" /* Set up variable list */

do until lastscreen
 "IMFEXEC CICS QUERY FILE" fname"" /* Get 1st/next scrn */
 do i = 1 to IMFNOL
 if notfirst & i = 1 then nop
 else
 do
 "IMFEXEC VGET LINE"i" INTO(FILEDATA) LOCAL"
 /* Check each line */
 if IMFCC /= ’0000’ then
 leave /* If VGET prob, stop */
 if update = ’0’ then /* The one I want? */
 count = count + 1 /* Y, count it */
 end
 end
 if imfnol < 23 then
 lastscreen = 1
 fname = name /* Set cursor position */
 notfirst = 1 /* No longer first call */
end

"IMFEXEC MSG ’CICSFILE: There are" count" files with 0 updates.’"
exit

BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-75

CICS
CLIST EXEC example:

PROC 2 NAME REGION
/*---*/
/* Clist exec to count the number of files with zero updates */
/* and return a message to the BBI journal indicating that */
/* number. */
/*---*/
IMFEXEC SETTGT ’&STR(®ION)’ /* Set region name */
SET COUNT = 0 /* Init counter */
SET LASTSCREEN = &STR(NO) /* Remember location */
SET FNAME = &STR() /* Null for first call */
SET NOTFIRST = &STR(NO) /* Set first call */

IMFEXEC VDCL FILEDATA LIST(NAME TYPE STATUS LSR READ ADD UPDATE +
GETUPD BROWSE DELETE) /* Set up variable list */

DO UNTIL &STR(&LASTSCREEN) = &STR(YES)
 IMFEXEC CICS QUERY FILE &FNAME /* Get 1st/next scrn */
 SET I = 1 /* Init loop counter */
 DO WHILE (&I LE &IMFNOL)
 IF &STR(&NOTFIRST) = &STR(YES) AND &I = 1 THEN +
 DO
 END
 ELSE +
 DO
 IMFEXEC VGET LINE&I INTO(FILEDATA) LOCAL
 /* Check each line */
 IF &IMFCC NE &STR(0000) THEN +
 GOTO ENDLOOP /* If VGET prob, stop */
 IF &UPDATE = &STR(0) THEN +
 SET &COUNT = &COUNT + 1 /* If so, count it */
 END
 SET &I = &I + 1 /* Bump up counter */
 END
BMC Software, Inc., Confidential and Proprietary Information

12-76 MAINVIEW AutoOPERATOR Advanced Automation Guide

CICS
Example 3

This example demonstrates how to use the QUERY command to gather data
from the TASK display. This EXEC is called from the BBI journal or another
EXEC or Rule.

Example from the BBI journal: %CICSTASK CICSPROD CEMT

REXX EXEC example:

/*-----------------------------REXX----------------------------*/
/* REXX exec to count the number of tasks running a particular */
/* transaction in CICS and return a message to the BBI journal */
/* indicating that number. */
/*---*/
arg name region tran pad
"IMFEXEC SETTGT ’"region"’"
scroll = ’0’ /* Init scroll count */
count = ’0’ /* Init counter */
lastscreen = 0 /* Init flag */
do until lastscreen
 "IMFEXEC CICS QUERY TASK * * /FWD"scroll"" /* Get 1st/next scrn */
 do i = 1 to IMFNOL
 "IMFEXEC VGET LINE"i" LOCAL" /* Check each line */
 if IMFCC /= ’0000’ then
 leave /* If VGET prob, stop */
 if substr(value(line||i),8,4) = tran then
 /* The one I want? */
 count = count + 1 /* Y, count it */
 end
 if imfnol < 23 then
 lastscreen = 1
 scroll = scroll + 23 /* Set scroll amount */
end

"IMFEXEC MSG ’CICSTASK: There are" count" tasks running" tran".’"
exit
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-77

CICS
CLIST EXEC example:

PROC 3 NAME REGION TRAN
/*---*/
/* Clist exec to count the number of tasks running a particular*/
/* transaction in CICS and return a message to the BBI journal */
/* indicating that number. */
/*---*/
IMFEXEC SETTGT ’&STR(®ION)’ /* Set region name */
SET &SCROLL = 0 /* Init scroll amount */
SET &COUNT = 0 /* Init counter */
SET &LASTSCREEN = STR(NO) /* Remember location */
SET &I = 1 /* Init loop counter */
DO UNTIL &STR(&LASTSCREEN) = &STR(YES)
 IMFEXEC CICS QUERY TASK * * /FWD&SCROLL /* Get 1st/Next screen */
 DO WHILE (&I LE &IMFNOL)
 IMFEXEC VGET LINE&I LOCAL /* Check each line */
 SET OUTLINE = &SYSNSUB(2,&&LINE&I)
 IF &STR(&IMFCC) NE &STR(0000) THEN +
 GOTO ENDLOOP /* If VGET prob, stop */
 /* The one I want? */
 IF &SUBSTR(8:11,&STR(&OUTLINE)) = &STR(&TRAN) THEN +
 SET &COUNT = &COUNT + 1 /* Y, COUNT IT */
 SET &I = &I + 1 /* Bump up counter */
 END

BMC Software, Inc., Confidential and Proprietary Information

12-78 MAINVIEW AutoOPERATOR Advanced Automation Guide

CICS
CICS RECOVERDB

This command prepares a database for recovery by preventing reads and
updates so a recovery utility can be run in another region.

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Example

This example command inhibits online updates to the database STDIDBP.

REXX EXEC example:

/* REXX */
"IMFEXEC CICS RECOVERDB STDIDBP"

CLIST EXEC example:

IMFEXEC CICS RECOVERDB STDIDBP

Command Parameters

CICS RECOVERDB Database name

 Parameter Function Notes

Database The name of the database identified in the
Data Management Block Directory (DMB)

1- to 8-characters alphanumeric.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-79

CICS
CICS RELEASE

 This command releases VTAM terminals from CICS.

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Example

This example command releases all terminals beginning with LM.

REXX EXEC example:

/* REXX */
"IMFEXEC CICS RELEASE TERMINAL LM*"

CLIST EXEC example:

IMFEXEC CICS RELEASE TERMINAL LM*

Command Parameters

CICS RELEASE TERMINAL
Terminal ID

Parameter Function Notes

Terminal identifier ID of the terminal to be released 1- to 4-characters alphanumeric.
If you use generics for the terminal ID
name, a maximum of only 200 discrete
commands are executed.
BMC Software, Inc., Confidential and Proprietary Information

12-80 MAINVIEW AutoOPERATOR Advanced Automation Guide

CICS
CICS SPURGE

This command dynamically changes the SPURGE value for a CICS
transaction.

Note: For CICS/ESA, the stall purge mechanism no longer exists.
SPURGE now indicates a transaction’s level of purge protection. If
the transaction definition specifies SPURGE=NO, the transaction is
protected from deadlock time-out purge and purge requests (but not
from force purge requests) issued by applications or the master
terminal.

The following table describes the parameters.

Example

This example command sets the SPURGE flag for transaction RT17 to on.

REXX EXEC example:

/* REXX */
"IMFEXEC CICS SPURGE RT17 YES"

CLIST EXEC example:

IMFEXEC CICS SPURGE RT17 YES

Command Parameters

CICS SPURGE Tranid
[YES|NO]

Parameter Function Notes

Tranid Transaction to affect

Status YES/NO Specifying YES turns the SPURGE flag
on.
Specifying NO turns the SPURGE flag off.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-81

CICS
CICS STARTDB

 This command activates a database, making it available for processing.

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Example

This example command activates a database with the name STDCDBP.

REXX EXEC example:

/* REXX */
"IMFEXEC CICS STARTDB STDCDBP"

CLIST EXEC example:

IMFEXEC CICS STARTDB STDCDBP

Command Parameters

CICS STARTDB Database name

 Parameter Function Notes

Database Database identified in the Data
Management Block Directory (DMB)

1- to 8-character name of the database.
BMC Software, Inc., Confidential and Proprietary Information

12-82 MAINVIEW AutoOPERATOR Advanced Automation Guide

CICS
CICS STOPDB

 This command deactivates a database, making it unavailable for processing.

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Example

This example deactivates the database STDCX2P.

REXX EXEC example:

/* REXX */
"IMFEXEC CICS STOPDB STDCX2P"

"IMFEXEC CICS STARTDB STDCDBP"

CLIST EXEC example:

IMFEXEC CICS STARTDB STDCDBP

Command Parameters

CICS STOPDB Database name

Parameter Function Notes

Database Database identified in the Data
Management Block Directory (DMB)

1- to 8-character name of the database.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-83

CICS
CICSTRAN

 This command invokes a CICS transaction.

The following table describes the parameters.

Example

This example command deactivates BBI-SS PAS to CICS communications.

/* REXX */
"IMFEXEC CICSTRAN FST2 ’QOFF’"

CLIST EXEC example:

IMFEXEC CICSTRAN FST2 ’QOFF’

Command Parameters

CICSTRAN Tran
[’Parameters’]

Parameter Function Notes

Tran The ID of the transaction to invoke 1- to 4-alphanumeric characters.
The transaction must be capable of running the
terminal unattached. For example, use EXEC
CICS RETRIEVE instead of EXEC CICS
RECEIVE.

Parameters Any parameters necessary for this
transaction

Maximum length is 80 characters.
BMC Software, Inc., Confidential and Proprietary Information

12-84 MAINVIEW AutoOPERATOR Advanced Automation Guide

CMD
CMD

The IMFEXEC CMD command performs a variety of functions depending
on the parameters supplied. It may be used to:

• Issue a BBI control command

• Issue an MVS command

• Issue an IMS command

There are two major command formats: commands that return a full response
and those that do not (or do so in a limited fashion). In general, enclosing the
command argument in quotation marks indicates that a response should be
returned to the EXEC.

For command with responses (commands inclosed in quotation marks) the
type of command defaults to MVS. You can override the default value by
coding TYPE(xxx), where xxx is BBI, IMS or MVS.

The different versions of IMFEXEC CMD are:

• CMD - Issue BBI command without response, page 12-86

• CMD - Issue BBI command with response, page 12-87

• CMD - Issue MVS command with response, page 12-90

• CMD - Issue IMS command without response, page 12-96

• CMD - Issue IMS command with response, page 12-99
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-85

CMD
CMD (Issue BBI Command without Response)

This command issues a BBI control command without a response.

The following table describes the parameters.

Condition codes are listed in the following table.

Example

This example command switches the active BBI-SS PAS Journal log data set
to an alternate data set. The command and any response are written to the
BBI-SS PAS Journal log, which is viewed from LOG DISPLAY.

/* REXX */
"IMFEXEC CMD .I JOURNAL"

CLIST EXEC example:

IMFEXEC CMD .I JOURNAL

Command Parameters

CMD .Command
[p1 ... pn]

Parameter Function Notes

Command
and
parameters

The command or command abbreviation
and any parameters

A period (.) identifies the command as a
BBI control command. See the
MAINVIEW Common Customization
Guide for a full description of the BBI
control commands.

Value Description

0 This command format always returns a zero condition code.
BMC Software, Inc., Confidential and Proprietary Information

12-86 MAINVIEW AutoOPERATOR Advanced Automation Guide

CMD
CMD (Issue BBI Command with Response)

This command format issues BBI commands. A response is returned to the
issuing EXEC.

Command output is placed in LOCAL variables LINE1 through LINEnnnn,
where nnnn is the last line (variable IMFNOL contains the value of nnnn).

Command Parameters

CMD ’.Command [p1 ... pn]’
TYPE(BBI)
ALL
ALLWAIT(1 - 9999)
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-87

CMD
The following table describes the parameters.

Condition codes are listed in the following table.

Parameter Function Notes

.Command
and
parameters

The command or command abbreviation
and any parameters

The period (.) identifies the command as a
BBI control command. See the MAINVIEW
Common Customization Guide for a full
description of the BBI control commands.

TYPE Command response designator Must be BBI.
If this is not specified, the command will be
issued as an MVS command.

ALL Retrieve all responses This parameter causes all other criteria to
be ignored and to wait for further
responses as long as responses continue
to arrive within half-second intervals.

ALLWAIT Specify an interval to wait from 1 to 9999
seconds.

ALLWAIT allows CMD processing to
continue waiting in intervals (specified in
seconds) until no responses are received
within an interval of that length.
If at least one response is received in that
interval, processing continues for an
additional interval. This processing is
repeated until no responses are received
within an interval, which may result in
added wait time. Therefore small intervals
of 1-5 are recommended.
Example of processing:
Sample command: IMFEXEC CMD
’cmd_text’ TYPE(BBI) ALL
ALLWAIT(3)

Processing waits 3 seconds as specified in
ALLWAIT and then checks to see if any
responses were received. If none, the
command is terminated. If a response was
received, processing waits an additional 3
seconds and checks again.
This action is repeated until no responses
are received within the specified interval.
ALLWAIT is only valid when ALL is
specified.

Value Description

0 Command response returned before WAIT time expired

4 Command partially returned after WAIT time expires

8 No reply has been received
BMC Software, Inc., Confidential and Proprietary Information

12-88 MAINVIEW AutoOPERATOR Advanced Automation Guide

CMD
Example

This example EXEC sends the BBI .D A command output to a TSO user ID.

/* REXX */
"IMFEXEC CMD ’.D A’ TYPE(BBI) ALL"
IF IMFCC < 5 THEN DO
 DO N = 1 TO IMFNOL
 "IMFEXEC VGET LINE"N "LOCAL"
 "IMFEXEC SEND ’LINE"N VALUE(’LINE’N) "’ USER(BBI1)"
 END
END

CLIST EXEC example:

PROC 0
/* CONTROL LIST CONLIST SYMLIST MSG */
IMFEXEC CMD '/STA DC’COUNT(20) TYPE(IMS)
SET I=1
DO WHILE &I NG &IMFNOL
IMFEXEC VGET LINE&I LOCAL
IMFEXEC MSG .LINE&I=&SYSNSUB(2,&&LINE&I)
SET I=&I+1
END
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-89

CMD
CMD (Issue MVS Commands)

This command issues MVS commands with response and MVS commands
with no response if COUNT (0) is specified. The response is returned to the
issuing EXEC.

The console choice is automatic and transparent. Command output is placed
in LOCAL variables LINE1 through LINEnnnn, where nnnn is the last line
(variable IMFNOL contains the value of nnnn). These variables must be
retrieved using the VGET command before they can be used.

In addition, prior to MVS Version 4, all consoles have only a 1-byte console
ID. Beginning with MVS Version 4, all consoles (subsystem and MCS) have
a 4-byte console ID and an 8-byte console name.

Some consoles may have a 1-byte console ID in addition to the new 4-byte
console ID. For example, MCS consoles (defined in the CONSOLxx member
of SYS1.PARMLIB) continue to have a 1-byte console ID in addition to the
4-byte console ID and 8-byte console name.

Before MVS version 4, all consoles had an 1-byte console ID. Beginning
with MVS version 4, all consoles (subsystem and and MCS) have a 4-byte
console ID and an 8-byte console name. Some consoles might have an
additional 1-byte console ID. These consoles are required for products that
do not yet know how to communicate to a console ID of four bytes. For these
products, MIGID(YES) must be specified.

Refer to the MAINVIEW AutoOPERATOR Customization Guide for more
information about MVS console considerations.

Command Parameters

CMD ’#Command’
[RESPONSE(*|Message ID)]
[COUNT|LINES(1|n)]
[WAIT(30|n)]
[CONSOLE(n)|NAME(xxxxxxxx)]
[ALL]
[ALLWAIT(1 - 9999)]
[MIGID(yes|no)]
[DEBUG]
[TYPE(MVS)]
BMC Software, Inc., Confidential and Proprietary Information

12-90 MAINVIEW AutoOPERATOR Advanced Automation Guide

CMD
Command Parameters Notes

‘#Command’ MVS command to be issued The maximum length of an MVS
command is 126 characters.
To prevent the BBI-SS PAS from
interpreting the MVS command as a BBI
command, make sure you prefix the MVS
command with a pound sign (#).
Prefixing the command with a # causes
AutoOPERATOR to treat the command as
an MVS command. The # is stripped off
the command before it is issued. If the
command you want to issue begins with a
#, make sure you prefix the command with
2 pound signs: ‘##command’.

RESPONSE Message ID(s) expected for response The default is ‘*’, which means any
message. You can specify up to 8
message IDs, separated by commas,
each up to 16 characters long. Wild cards
are allowed.
If RESPONSE(*) is specified, the EXEC
picks up all messages from the selected
MVS console. If there are messages that
are responses to previous commands on
the same MVS console, it is
recommended that RESPONSE is coded
for the MSG ID.

COUNT|LINES Number of response lines to be retrieved Default is 1. You may specify from 0
through 9999. A Multi Line WTO
(MLWTO) is counted as one line (even
though it may be composed of many lines,
as in some VTAM command responses).
If COUNT(0) is explicitly coded, it means
no response is needed. This format is
recommended over using the IMFEXEC
CMD without response statement.

WAIT Length of time to wait for all response
lines to arrive

Default is 30 seconds. You may specify
from 5 through 999 seconds.

CONSOLE A 1-byte console ID to issue the
command from

This is needed only under unusual
conditions and you must have a valid,
active MVS console available or no
response can be obtained.

ALL Retrieve all responses This parameter causes all other criteria to
be ignored and to wait for further
responses as long as responses continue
to arrive within half-second intervals.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-91

CMD
The IMFEXEC CMD with response results in some variables being set in
addition to IMFCC. IMFCCON contains the 1-byte console ID or migration
ID (decimal). If the Extended MCS console does not have a migration ID, the
variable IMFCCON contains 255. The variable IMFCNAME contains the
console name.

ALLWAIT Specify an interval to wait from 1 to 9999
seconds.

ALLWAIT allows CMD processing to
continue waiting in intervals (specified in
seconds) until no responses are received
within an interval of that length.
If at least one response is received in that
interval, processing continues for an
additional interval. This processing is
repeated until no responses are received
within an interval, which may result in
added wait time. Therefore small intervals
of 1-5 are recommended.
Example of processing:
Sample command: IMFEXEC CMD
’cmd_text’ TYPE(BBI) ALL
ALLWAIT(3)
Processing waits 3 seconds as specified
in ALLWAIT and then checks to see if any
responses were received. If none, the
command is terminated. If a response
was received, processing waits an
additional 3 seconds and checks again.
This action is repeated until no responses
are received within the specified interval.
ALLWAIT is only valid when ALL is
specified.

NAME A valid MVS console name Use this parameter if the command must
be issued from a specific MVS console
name.
When command responses are expected,
one of three things can happen
(depending on the state of the console of
the console name you specified):
• An active console identified to

AutoOPERATOR will be used.
• When the command ends, the console

is deactivated.
If command responses are not required
(COUNT=0), any valid MVS console
(defined or undefined, active or inactive)
may be specified.
The NAME and CONSOLE parameters
cannot be used together.

MIGID Specify YES or NO to use an X-MCS
console with a MIGID.

MAINVIEW AutoOPERATOR default is
NO. If you specify YES, an X-MCS
console with a MIGID is used.

 DEBUG Issues debugging messages Used for problem diagnosis.

TYPE

Command Parameters Notes
BMC Software, Inc., Confidential and Proprietary Information

12-92 MAINVIEW AutoOPERATOR Advanced Automation Guide

CMD
The variable IMFRC contains the return code given by the MVS MGCRE
macro (which is used to issue the command). This return code is meaningful
only when issuing the MVS START command. Do not inspect this variable if
you are not issuing the MVS START command. When you issue the MVS
START command and if IMFRC is zero, the variable IMFCASID contains
the ASID (decimal) of the started address space and IMFCSTKN contains
the STOKEN (16 hexadecimal characters).

To issue a MVS command without response, use the following format:

IMFEXEC CMD “MVS command” count(0) TYPE (MVS)

Value Description

0 Command responded within WAIT time

4 Command partially responded within WAIT time

8 No reply has been received, WAIT time has expired

16 Command text is greater than 121 characters

20 Severe error: see short message text for more information
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-93

CMD
Example 1

This EXEC demonstrates how to issue a VTAM command with response.
Note, VTAM typically returns its responses as a Multi-line WTO (MLWTO);
therefore, the COUNT parameter should be set to one (the default).

/* REXX */
PARSE ARG EXNAME .
"IMFEXEC MSG ’."EXNAME "EID="IMFEID"’"
"IMFEXEC CMD ’#D NET,CDRMS’ RESPONSE(IST350I)"
"IMFEXEC MSG ’."EXNAME "IMFNOL="IMFNOL "CC="IMFCC"’"

DO I=1 TO IMFNOL
 "IMFEXEC VGET LINE"I "LOCAL"
 "IMFEXEC MSG ’."EXNAME "LINE"I "LENGTH="LENGTH(VALUE(’LINE’I))"’"
 "IMFEXEC MSG ’."EXNAME VALUE(’LINE’I)"’"
END

"IMFEXEC MSG ’."EXNAME "EID="IMFEID "ENDED’"

CLIST EXEC example. This example shows that results are more reliable
when JES2 returns responses as multi-line WTOs. Note that the COUNT
value is the default of 1.:

PROC 1 EXNAME
IMFEXEC MSG ’.&EXNAME EID=&IMFEID STARTED’

/* request JES2 responses in multi-line WTO format */
IMFEXEC CMD ’#$DI,L=Z’ RESP($HASP636) MIGID(NO)

IMFEXEC MSG ’.&EXNAME NOL=&IMFNOL CC=&IMFCC’
SET &I = 0
DO WHILE &I < &IMFNOL
 SET &I= &I + 1
 IMFEXEC VGET LINE&I LOCAL
 IMFEXEC MSG ’.LINE&I = &SYSNSUB(2,&&LINE&I)’
END

IMFEXEC MSG ’.&EXNAME EID=&IMFEID ENDED’
BMC Software, Inc., Confidential and Proprietary Information

12-94 MAINVIEW AutoOPERATOR Advanced Automation Guide

CMD
Example 2

This REXX EXEC demonstrates how to issue a JES2 command with
response. Note that requesting JES2 to return its responses as a Multi-line
WTO (MLWTO) through the L=Z option provides a more reliable means to
make sure that you receive all the response lines. Since JES2 (in this case)
returns one MLWTO ($HASP636, even though it comprises many lines), the
COUNT parameter should be set to one (the default).

/* REXX */
PARSE ARG EXNAME .
"IMFEXEC MSG ’."EXNAME "EID="IMFEID"’"
"IMFEXEC CMD ’#$DJ1-999,L=Z’ RESPONSE($HASP636)"
"IMFEXEC MSG ’."EXNAME "IMFNOL="IMFNOL "CC="IMFCC"’"

DO I=1 TO IMFNOL
 "IMFEXEC VGET LINE"I "LOCAL"
 "IMFEXEC MSG ’."EXNAME "LINE"I "LENGTH="LENGTH(VALUE(’LINE’I))"’"
 "IMFEXEC MSG ’."EXNAME VALUE(’LINE’I)"’"
END

"IMFEXEC MSG ’."EXNAME "EID="IMFEID "ENDED’"
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-95

CMD
CMD (Issue IMS Command without Response)

This command format issues IMS commands. Only minimal response is
returned.

Generic resource names can be specified in the commands using wildcard
characters. The plus sign (+) can be used to represent any one character,
while the asterisk (*) can be used to represent any number of characters.

The response segment is returned in the standard CLIST variable SYSDVAL,
which can be parsed using the READDVAL command. READDVAL
functions the same way as in a TSO CLIST.

Note: Command response is not returned when the /MODIFY or
/MSVERIFY command is issued.

Condition codes are listed in the following table.

Command Parameters

CMD /IMS command

Parameters Function

/IMS command The IMS command to be issued

Value Description

0 Command issued and first segment of response returned in SYSDVAL.

4 Generic command format resulted in multiple IMS commands. SYSDVAL contains
response to first command.

8 Command timed out, no response returned (Msg IM9215W issued).

12 One of the following:
• Target IMS not available
• The message, IO1317W Command Not Issued, No Matching
Resource Found is returned as a response when there are no matching
resources found.
BMC Software, Inc., Confidential and Proprietary Information

12-96 MAINVIEW AutoOPERATOR Advanced Automation Guide

CMD
Example 1 - Issuing generic commands

In this example, AutoOPERATOR issues generic /STA DATABASE
commands to start all databases whose names begin with BE3 or contain the
characters ORDER in positions 4-8.

The * cannot be followed by any other characters and only one can be used in
a string. You can use a + and an * together in a generic IMS resource
command but the * must be the last character.

/* REXX */
"IMFEXEC CMD /STA DATABASE BE3ORDER"
"IMFEXEC CMD /STA DATABASE BE3*"
"IMFEXEC CMD /STA DATABASE +++ORDER"
"IMFEXEC CMD /STA DATABASE BE+ORDER"

CLIST EXEC example:

IMFEXEC CMD /STA DATABASE BE3ORDER
IMFEXEC CMD /STA DATABASE BE3*
IMFEXEC CMD /STA DATABASE +++ORDER
IMFEXEC CMD /STA DATABASE BE+ORDER

Example 2 - Retrieving &SYSDVAL

Starts an IMS transaction and verifies that the start command worked. This
method of issuing an IMS command (no quotation marks) returns only the
first response segment to the EXEC. Additional response segments are not
available to the EXEC.

See the description of IMS command with response in the next section for
information about accessing all response segments in an EXEC.

/* REXX */
"IMFEXEC CMD /STA TRAN TE4COCNG"
/* SYSDVAL = DFS058 COMMAND COMPLETED EXCEPT FOR TE4COCNG */
READDVAL MSGID P1 P2 P3 P4 P5
IF P3 = ’EXCEPT’ THEN DO
 commands
END
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-97

CMD
CLIST EXEC example:

IMFEXEC CMD /STA TRAN TE4COCNG
/* SYSDVAL = DFS058 COMMAND COMPLETED EXCEPT FOR TE4COCNG */
READDVAL MSGID P1 P2 P3 P4 P5
IF &P3 EQ EXCEPT THEN DO
 commands
END
BMC Software, Inc., Confidential and Proprietary Information

12-98 MAINVIEW AutoOPERATOR Advanced Automation Guide

CMD
CMD (Issue IMS Command with Response)

This command format issues IMS commands. A response is returned to the
issuing EXEC.

Generic resource names can be specified in the commands using wildcard
characters. The plus sign (+) can be used to represent any one character,
while the asterisk (*) can be used to represent any number of characters.
Only one by any other characters. The + and in a string.

Note: Generic names are not supported for the ?RMxxxxxx DBRC
(Database Recovery Control) commands.

The response segment is returned in the local variable pool in variable LINE1
through LINEnnnn. The number of lines returned is available in IMFNOL.

Note: Command response is not returned when the /MODIFY or
/MSVERIFY command is issued.

 Command Parameters

CMD ’/IMS command’
[COUNT(1|n)]
TYPE(IMS) MIGID(YES | NO)
DBCTL(dbctltgt)
[WAIT(30|n)]
ALL
ALLWAIT(1 - 9999)

Parameters Function Notes

’/IMS or DBCTL
command’

The command to be issued The maximum length of the IMS command
is 252 bytes.
Note: The / (slash) designates this
command format as an IMS or DBCTL
command. The quotes indicate that a
response is to be returned.

COUNT The maximum number of response
segments

Numeric value in the range
1-9999. This parameter is
required.
When the response to a command is an
IMS multi-segment message, the
IMFEXEC CMD TYPE(IMS) stops waiting
when any of the following conditions is
met:
WAIT time has expired.
COUNT value has been met.
IMS sent the last segment of a multi-
segment message.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-99

CMD
TYPE Command response designator Must be IMS. This parameter is required.
If this parameter is not specified, the
command will be issued as an MVS
command.

DBCTL DBCTL target address space name Must be used for DBCTL-only address
spaces. Must not be used for IMS and
DBCTL address spaces.
Note: A DBCTL command uses the
extended MCS console to issue the
command and retrieve the response.

Parameters that are documented in this
section apply to DBCTL commands.
MIGID(YES) might be required.

WAIT The maximum amount of time, in seconds,
to wait for a command response

Numeric value in the range
5-9999.
When the response to a command is an
IMS multi-segment message, the
IMFEXEC CMD TYPE(IMS) stops waiting
when any of the following conditions is
met:
WAIT time has expired.
COUNT value has been met.
IMS sent the last segment of a multi-
segment message.

ALL Retrieve all responses This parameter causes all other criteria to
be ignored and to wait for further
responses as long as responses continue
to arrive within half-second intervals.

ALLWAIT Specify an interval to wait from 1 to 9999
seconds.

ALLWAIT allows CMD processing to
continue waiting in intervals (specified in
seconds) until no responses are received
within an interval of that length.
If at least one response is received in that
interval, processing continues for an
additional interval. This processing is
repeated until no responses are received
within an interval, which may result in
added wait time. Therefore small intervals
of 1-5 are recommended.
Example of processing:
Sample command: IMFEXEC CMD
’cmd_text’ TYPE(BBI) ALL
ALLWAIT(3)IMFEXEC CMD
Processing waits 3 seconds as specified in
ALLWAIT and then checks to see if any
responses were received. If none, the
command is terminated. If a response was
received, processing waits an additional 3
seconds and checks again.
This action is repeated until no responses
are received within the specified interval.
ALLWAIT is only valid when ALL is
specified.

Parameters Function Notes
BMC Software, Inc., Confidential and Proprietary Information

12-100 MAINVIEW AutoOPERATOR Advanced Automation Guide

CMD
IMS commands are issued by way of the IMS internal interface, which
returns the response to the issuing EXEC. DBCTL commands are issued as
MVS commands prefixed with the DBCTL command character, and MVS
returns the response.

Condition codes are listed in the following table.

Example 1

This example requests the transactions whose trancodes begins with TH and
receives up to 20 response segments.

/* REXX */
 "IMFEXEC CMD ’/DIS TRAN TH*’ COUNT(20) TYPE(IMS)"
 DO N = 1 to IMFNOL
 "IMFEXEC VGET LINE"N" LOCAL"
 "IMFEXEC MSG ’LINE"N"="VALUE(’LINE’N)" ’ "
 END
 EXIT

CLIST EXEC example:

IMFEXEC CMD ’/DIS TRAN TH*’ COUNT(20) TYPE(IMS)
SET I=1
SET SYSSCAN=0
SET AMPER=&
SET SYSSCAN=16
DO WHILE &I NG &IMFNOL
 IMFEXEC VGET LINEI LOCAL
 IMFEXEC MSG .. &LINEI &ER.&LINEI
 SET I=&I+1
END

Value Description

0 Command responded within WAIT time

4 Command partially responded within WAIT time

8 No reply has been received, WAIT time has expired

12 Target IMS not active; no matching resource for generic command
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-101

CMD
Example 2

This example utilizes the VDCL function to obtain the first 20 transactions
starting with TH* and create Alerts for those with non-zero PLCT. These
Alerts will be created with a key = current time in seconds and the text will
include the transaction name and the PLCT value.

/* REXX */
"IMFEXEC CMD ’/DIS TRAN TH*’ COUNT(20) TYPE(IMS)"
"IMFEXEC VDCL DISPLAY LIST (MSG A B C D E F G H I J K L M)"
KEY = TIME(’S’)
DO N = 1 TO IMFNOL
 "IMFEXEC VGET LINE"N" INTO (DISPLAY) LOCAL"
 IF (MSG = T02) & (F > 0) THEN DO
 "ALERT "KEY" ’ ’TRAN = "A" COUNT = "F" ’ FUNCTION(ADD)",
 " QUEUE(TEST) ORIGIN(REGIS) COLOR(RED)"
 END
END
EXIT

Example 3

This example shows how to issue the IMS command /DIS A with a response
and process the LINE1...LINEI variables, which contain the response
messages.

/*REXX*/
"IMFEXEC CMD ’/DIS A’ ALL TYPE(IMS)"
"IMFEXEC MSG ’IMFCC="IMFCC" IMFNOL="IMFNOL"’"
DO I = 1 TO IMFNOL
"IMFEXEC VGET LINE"I" LOCAL"
"IMFEXEC MSG ’LINE"I"="VALUE(’LINE’I)" ’ "
END
EXIT
BMC Software, Inc., Confidential and Proprietary Information

12-102 MAINVIEW AutoOPERATOR Advanced Automation Guide

CNTL
CNTL

 This command controls the general processing flow and characteristics of an
EXEC.

Use this command for help in debugging AutoOPERATOR EXECs. CNTL
LIST causes all commands issued with the EXEC to be listed in the BBI-SS
PA Journal log. Refer to Chapter 13, “Testing and Debugging EXECs
Interactively” for more information about testing EXECs.

The following table describes the parameters.

Command Parameters

CNTL [CMD|NOCMD]
[LIST|NOLIST]
[PERLIM()]
[TIMLIM()]
[SELLIM()]
[MAXTPUT()]
[GLOBAL|LOCAL]

Parameter Function Notes

CMD Normal EXEC processing is in effect Default

LIST List every EXEC command in the
BBI-SS PAS log

NOCMD Do not process action commands When NOCMD is in effect in the current CLIST, the
following IMFEXEC commands are not executed:
CMD, CICSTRAN, IMSTRAN, SUBMIT, RES CMD,
RES EXIT, RES MCMD, and RES VMCMD. A
message is printed in the BBI-SS PAS Journal log
informing you that the command would have been
executed if this control request were not in effect.
This is an easy way to test new EXECs.

NOLIST Normal EXEC processing is in effect Default

PERLIM CPU percentage limit for the EXEC If the CPU usage of an EXEC exceeds this value in
any 15 second interval after the EXEC begins, the
EXEC will be terminated.
The CPU percentage is calculated based on the total
CPU time available on 1 CPU within that 15 second
interval. For example, 20% means 20% of 15
seconds. If the CPU time exceeds 3 seconds with
any given 15 second interval, the EXEC will be
terminated.
The maximum CPU percentage usable is 100%,
even on multiprocessor machines.
Specifying 0 means no CPU percentage checking is
performed.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-103

CNTL
Condition codes are listed in the following table.

Example

This command causes echoing of all IMFEXEC commands and the
termination of the EXEC if its total CPU time exceeds 5 seconds.

/* REXX */
"IMFEXEC CNTL LIST TIMLIM(5)"

CLIST EXEC example:

IMFEXEC CNTL LIST TIMLIM(5)

TIMLIM CPU time limit for the EXEC If the EXEC exceeds this value in CPU seconds, it is
terminated.
Specifying 0 means no CPU time checking is
performed.

SELLIM Limits the number of nested EXECs
in the current EXEC thread

This applies only to nested EXECs invoked with the
IMFEXEC SELECT command using WAIT(YES).
Specifying 0 means no limit checking is performed.

MAXTPUT Limits the number of TPUTs that
can be issued from the current
EXEC

TPUTs occur when a REXX EXEC uses the TRACE
command and when there are TSO/E error
messages.
Specifying 0 means no limit checking is performed.

The use of the PERLIM, TIMLIM, SELLIM, and MAXTPUT parameters in an EXEC will temporarily override
corresponding parameters set in the BBPARM member (as well as those dynamically updated using the
Dynamic Parameter Manager application) as follows:
PERLIM PEREXLIM
TIMLIM TIMEXLIM
SELLIM SELLIM
MAXTPUT MAXTPUT

GLOBAL Propagate CNTL settings to all
called EXECs

When set, any EXEC invoked through the IMFEXEC
SELECT command inherits the CNTL settings of the
current EXEC.

LOCAL All settings are local to this EXEC CNTL settings will not be propagated to EXECs
called by this EXEC.

Value Description

0 Command was executed

8 Invalid syntax was used

Parameter Function Notes
BMC Software, Inc., Confidential and Proprietary Information

12-104 MAINVIEW AutoOPERATOR Advanced Automation Guide

DOM
DOM

 This command deletes a WTO or WTOR.

Certain descriptor codes indicate to MVS that a WTO should not roll off the
master console but should stay there until explicitly deleted by the operator.
If the cause for this WTO is no longer present, or the reply for a WTOR is no
longer required, the WTO(R) can be deleted using the IMFEXEC DOM
command.

Two AutoOPERATOR variables are used to determine the domid of a WTO
or WTOR, or Rule-initiated EXECs. IMFWTDOM is set when an IMFEXEC
WTO or IMFEXEC WTOR command is issued. IMFDOMID is set for Rule-
initiated EXECs triggered by WTOs, WTORs, or MWTO events. It may be
necessary to save IMFWTDOM or IMFDOMID in a shared variable so that a
subsequent EXEC can issue the DOM.

The following table describes the parameters.

Condition codes are listed in the following table.

Example

This example deletes the WTO(R) that caused the EXEC to be triggered.

/* REXX */
"IMFEXEC DOM ID("IMFDOMID")"

Command Parameters

DOM ID(domid)

Parameter Function Notes

ID(domid) The WTO(R) Sequence
number

It uniquely identifies a WTO(R) and can be retrieved either:
• In Rule-initiated EXECs (that are triggered by the event

types WTO, WTOR, or MWTO) using the IMFDOMID
variable

• In an EXEC that issues IMFEXEC WTOs or WTORs from
IMFWTDOM.

Value Description

0 DOM issued

8 DOM ID missing
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-105

DOM
CLIST EXEC example:

IMFEXEC DOM ID(&IMFDOMID)

DOMID for a WTO or WTOR that is issued by an EXEC is placed in
variable IMFWTDOM.
BMC Software, Inc., Confidential and Proprietary Information

12-106 MAINVIEW AutoOPERATOR Advanced Automation Guide

EXIT
EXIT

 This command sets the return code IMFEXRC.

The exit code must be a numeric value, up to four characters in length and
can range from 0 to 9999.

The following table describes the parameters.

Note: This command does not terminate the EXEC. You must explicitly
terminate the EXEC using standard REXX constructs.

Condition codes are listed in the following table.

Example

This example command terminates the current EXEC and signals a return
code (IMFEXRC) of 12.

/* REXX */
"IMFEXEC EXIT CODE(12)"

CLIST EXEC example:

IMFEXEC EXIT CODE(12)

Command Parameters

EXIT [CODE(0|n)]

Parameter Function Notes

CODE The return code to be passed back to the
invoker

This return code will be passed on to an
IMFSUBEX program or an EXEC in the
variable IMFEXRC.

Value Description

0 This command always returns a zero condition code
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-107

HB
HB

 This command changes the interval between heartbeat messages exchanged
by a BBI-SS PAS and the Elan workstation.

The following table describes the parameters.

Condition codes are listed in the following table.

Example

This command forces heartbeat messages between the BBI-SS PAS and the
Elan Workstation to be exchanged every 20 seconds.

/* REXX */
"IMFEXEC HB INTERVAL(20)"

CLIST EXEC example:

IMFEXEC HB INTERVAL(20)

Command Parameters

HB [INTERVAL(30|n)]

Parameter Function Notes

INTERVAL The number of seconds between heartbeat
messages exchanged between the BBI-SS
PAS and the Elan Workstation

This command changes the interval for
both the BBI-SS PAS and the Elan
Workstation. The change takes effect after
the expiration of the current interval.

Value Description

0 Command successfully executed

8 Interval specification missing or invalid
BMC Software, Inc., Confidential and Proprietary Information

12-108 MAINVIEW AutoOPERATOR Advanced Automation Guide

IMFC
IMFC

 This command issues an IMF or MAINVIEW for DB2 service command to:

• Invoke an analyzer display

• Start and stop monitors

• Invoke monitor displays (such as PLOT and DMON)

• Invoke a display for automatic image logging

This command supports only local targets. Local targets are assigned in
BBPARM member BBIJNT00 (refer to the MAINVIEW Common
Customization Guide for more information about this BBPARM member).

The following table describes the parameters.

Command Parameters

IMFC Command/options
TARGET|IMSNAME=,
[IMAGE=,]
[USRID=,]
[SCROLL=YES|NO]

Parameter Function Notes

Command/options An IMF or MAINVIEW for DB2 service
command and any required parameters

1- to 8 alphanumeric characters.

TARGET=
IMSNAME=

The target for the request
This command supports only local targets.
Local targets are assigned in BBPARM
member BBIJNT00 (refer to the
MAINVIEW Common Customization
Guide for more information about this
BBPARM member).

An IMSID (or alias) value can be used as
the TARGET name if it has been specified
in the BBIJNT00 member of BBPARM. If
TARGET= is not specified, a PM0330E
error message is logged in the BBI-SS
PAS Journal log and the request is
terminated.

IMAGE= Write output to the Image Log (BBIIMAGx) YES or NO. YES is the default.

USRID= The user ID to be associated with the
command.

The user ID is checked when requests to
purge monitor services are processed.
The default is AUTOID from BBIISP00 or
the characters USRID.

SCROLL= Scrolls the display forward one full page
(40 lines) from the previous IMFC request
if scrolling is available in that particular
display

YES or NO. NO is the default.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-109

IMFC
If you use the parameters SCROLL=YES,IMAGE=NO, the data retrieved will
contain every screen one by one until the line END OF DATA is found. If you
use the parameters SCROLL=YES,IMAGE=YES, all screens are logged but the
data contains only the last screen.

Examples

This section contains examples using the IMFEXEC IMFC command
statement. A brief discussion follows each example.

Note: Remember that the IMFC statement does not return a value in
IMFNOL.

Example 1

/* REXX */

LAST = ’’ /* FOR THE FIRST TIME */

LOOP:

IF LAST = ’’ THEN "IMFEXEC IMFC OSTAT LTERM=B* TARGET=IMS41X"
ELSE "IMFEXEC IMFC OSTAT LTERM=B* START="LAST" TARGET=IMS41X"

I = 4
DO WHILE I <= 24
 "IMFEXEC VGET LINE"I" LOCAL"
 IF SUBSTR(VALUE(’LINE’I),67,9) = ’CONNECTED’ THEN
 DO
 TERM = SUBSTR(VALUE(’LINE’I),2,8)
 IF ’LINE’I = ’LINE24’ THEN NOP /* LINE24 WILL BE INCLUDED IN NEXT */
 ELSE
 "IMFEXEC MSG ’TERMINAL "TERM" IS NOT CONNECTED’"
 END
ELSE NOP
I = I + 1
END
LAST = SUBSTR(VALUE(’LINE24’),2,8) /* LAST TERMINAL ON THE SCREEN */

IF LAST ,= ’’ THEN SIGNAL LOOP;
ELSE EXIT

This example shows a REXX EXEC issuing the IMFC OSTAT service. The
EXEC loops until there is no more data and checks the terminals with the
status: NOT CONNECTED. For these terminals, it issues message on the
BBI LOG.
BMC Software, Inc., Confidential and Proprietary Information

12-110 MAINVIEW AutoOPERATOR Advanced Automation Guide

IMFC
CLIST EXEC example:

PROC 0

SET &LAST = ’’
LOOP: +
IF &LAST = ’’ THEN IMFEXEC IMFC OSTAT LTERM=B* TARGET=IMS41X
ELSE IMFEXEC IMFC OSTAT LTERM=B* START=&LAST TARGET=IMS41X
SET &I = 4
DO WHILE &I <= 24
 IMFEXEC VGET LINE&I LOCAL
 IF &SUBSTR(&SYSNSUB(2,&&LINE&I),67,9) = ’CONNECTED’ THEN DO
 TERM = &SUBSTR(&SYSNSUB(2,&&LINE&I),2,8)
 IF &&LINE&I = ’LINE24’ THEN NOP
 ELSE
 IMFEXEC MSG ’TERMINAL &TERM IS NOT CONNECTED’
 END
 ELSE NOP
SET &I = &I + 1
END
SET &LAST = &SUBSTR(&LINE24,2,8)
IF &LAST [= ’’ THEN GOTO LOOP;
ELSE EXIT

Example 2

/* REXX */
"IMFEXEC VGET QIMSNAME"
"IMFEXEC IMFC USER RESPINP TARGET="QIMSNAME" IMAGE=NO"
DO I = 8 TO 43
 "IMFEXEC VDCL IMFL"I" LIST(V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11)"
 "IMFEXEC VGET LINE"I" INTO(IMFL"I") LOCAL"
 "IMFEXEC MSG .. "V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11"’"
 IF SUBSTR(V1,1,3) = ’***’ THEN EXIT
END
DO 900
 "IMFEXEC IMFC USER RESPINP TARGET="QIMSNAME" IMAGE=NO SCROLL=YES"
 DO I = 8 TO 43
 "IMFEXEC VDCL IMFL"I" LIST(V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11)"
 "IMFEXEC VGET LINE"I" INTO(IMFL"I") LOCAL"
 "IMFEXEC MSG .. "V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11"’"
 IF SUBSTR(V1,1,3) = ’***’ THEN EXIT
 END
END
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-111

IMFC
This example shows a REXX EXEC that issues the IMFC USER service with
a parameter of RESPINP. The RESPINP parameter is used for IMS terminals
in response input mode. The USER service is a scrollable service.

The REXX EXEC invoked with the SELECT command, FREERSP, issues
IMS commands to display, stop, dequeue and start the terminals. Note that
for multiple screens of data returned, the IMFC service returns the screen in
local variables LINE8 through LINE43, then places the next screen in the
same variables, LINE8 through LINE43.

CLIST EXEC example:

PROC 0
IMFEXEC VGET QIMSNAME
IMFEXEC IMFC USER RESPINP TARGET=&QIMSNAME IMAGE=NO
DO I = 8 TO 43
 IMFEXEC VDCL IMFL&I LIST(V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11)
 IMFEXEC VGET LINE&I INTO(IMFL&I) LOCAL
IF &SUBSTR(&V1,1,3) = ’***’ THEN EXIT
END
SET &END = NO
DO UNTIL &END = YES
 IMFEXEC IMFC USER RESPINP TARGET=&QIMSNAME IMAGE=NO SCROLL=YES
 DO I = 8 TO 43
 IMFEXEC VDCL IMFL&I LIST(V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11)
 IMFEXEC VGET LINE&I INTO(IMFL&) LOCAL
 IF &SUBSTR(&V1,1,3) = ’***’ THEN SET &END = YES
 END
END
BMC Software, Inc., Confidential and Proprietary Information

12-112 MAINVIEW AutoOPERATOR Advanced Automation Guide

IMFC SET PRG=CALLX | ALL
IMFC SET PRG=CALLX | ALL

This command uses SET PRG=CALLX|ALL to terminate a time-initiated
EXEC.

The following table describes the parameters.

Condition codes are listed in the following table.

Command Parameters

IMFC SET PRG=CALLX| ALL Execname
[USRID=userid,]
TARGET=target name

 Parameter Function Notes

USRID= The name of the user ID against which
authorization checking is performed (if this
is different from the user ID of the
originator of the request).

If the user ID is different from the user ID of
the request’s originator, the purging user ID
must have authority to purge the
originator’s CALLX requests.
To accomplish this, code PMACC=# on the
AUTHJOB= statement in the BBPARM
authorization member for the appropriate
user ID.

Note: If PRG=ALL is specified, security is done against the user ID that is specified on the AUTOID parameter
for the BBPARM member BBIISP00.

TARGET= The target against which the CALLX
request will be purged.

Value Description

0 Command executed successfully

8 One of the following:
• TARGET= is missing
• An error in the monitor or analyzer service occurred (Msg PM0334E issued)
• Syntax error in SET command (Msg PM0337E issued)

16 Handling program not found
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-113

IMFC SET PRG=CALLX | ALL
Example

This example shows how to use the IMFEXEC IMFC SET PRG=CALLX
command statement that terminates a time-initiated EXEC called
IMSCHECK. It can be called from a Rule when IMS terminates.

"IMFEXEC IMFC SET PRG=CALLX IMSCHECK"

CLIST EXEC example:

IMFEXEC IMFC SET PRG=CALLX IMSCHECK
BMC Software, Inc., Confidential and Proprietary Information

12-114 MAINVIEW AutoOPERATOR Advanced Automation Guide

IMFC SET REQ=CALLX
IMFC SET REQ=CALLX

 This command uses SET REQ=CALLX to start a time-initiated EXEC or
SET PRG=CALLX to terminate a time-initiated EXEC.

The following table describes the parameters.

CALLX requests can be viewed and purged when you select the TIMEXEC
option from the EXEC Manager Menu.

Condition codes are listed in the following table.

 Command Parameters

IMFC SET REQ=CALLX Execname
[START=hh:mm::ss,]
[STOP=hh:mm:ss,]
[STOPCNT=()]
[I=00:01:00|hh:mm:ss,]
[USRID=userid,]
TARGET=target name

Parameter Function Notes

Execname The name of the EXEC to be scheduled No parameters can be passed to the
EXEC.

START= The start time for an EXEC Format is: HH:MM:SS.
The valid start times are from 00:00:01 to
24:00:00 (00:00:00 is not supported). If
you have an EXEC that calculates time to
00:00:00, you must ensure that the EXEC
translates the 00:00:00 to 24:00:00.

STOP= The stop time for rescheduling the EXEC Format is: HH:MM:SS.
The valid stop times are from 00:00:01 to
24:00:00 (00:00:00 is not supported). If
you have an EXEC that calculates time to
00:00:00, you must ensure that the EXEC
translates the 00:00:00 to 24:00:00.

STOPCNT= The number of times the EXEC will be
scheduled

A valid decimal number.

I= The interval between EXEC schedules Format is HH:MM:SS.

TARGET= The target against which the EXEC will be
scheduled

USRID= The name of the user ID for the request
using the online application

The value specified will be used for
authorization checking. It also will
become the owner of the resulting
request.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-115

IMFC SET REQ=CALLX
Example

This example shows how to use the IMFEXEC IMFC SET REQ=CALLX
command statement.

/* REXX */
"IMFEXEC IMFC SET REQ=CALLX @HOURLY START=06:00:00 STOP=16:00:00",
 "I=01:00:00 TARGET="IMFORGSS "USRID=JDB1"

This example causes an EXEC named @HOURLY to be issued every hour,
beginning at 6:00 am and ending at 4:00 pm on the same system that this
EXEC is invoked on. The user with user ID JDB1 will be able to purge this
request. Also, any user with PMACC=# coded in the BBPARM user ID
authorization member can purge this request.

CLIST EXEC example:

IMFEXEC IMFC SET REQ=CALLX @HOURLY START=6:00:00 STOP=16:00:00 +
 I=01:00:00 TARGET=&IMFORGSS USRID=JDB1

 Value Description

0 Command executed successfully

8 One of the following:
• TARGET= is missing
• An error in the monitor or analyzer service occurred (Msg PM0334E issued)
• Syntax error in SET command (Msg PM0337E issued)

16 Handling program not found
BMC Software, Inc., Confidential and Proprietary Information

12-116 MAINVIEW AutoOPERATOR Advanced Automation Guide

IMSTRAN
IMSTRAN

 This command submits IMS transactions.

The following table describes the parameters.

The response, if any, is queued to the LTERM specified in the RLTERM
parameter of the BBPARM member AAOTRN00 of the target system. The
default value is MASTER. You can set RLTERM=DFSMTCNT if you do not
want any output to be sent back to the inputting LTERM.

Within IMS, the transaction is viewed as a normal transaction once it arrives
in the message queue, with the input LTERM set to the RLTERM value. Only
one destination LTERM is provided per BBI-SS PAS and IMS.

Condition codes are listed in the following table.

Command Parameters

IMSTRAN Transaction code
[’p1 ... pn’]

Parameter Function Notes

Transaction code and (optional)
operands

Transaction code of transaction to
invoke and optional parameters

Transaction code name must be
defined in AAOTRN00. Any
optional parameters must be
included in quotes.
Maximum length is 255 characters.
If a command does not require an
operand, code ’ ’ (a blank) as the
operand. Conversational or remote
transactions are not supported.
In a shared queue environment,
the combined length of all
operands passed must not exceed
101 characters.

Value Description

0 Command issued successfully.

12 An error occurred. The error message is logged to the BBI journal.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-117

IMSTRAN
Example

This example invokes the IMS transaction ADDPART.

Note: If you need to continue this command, use the minus sign (-) as the
TSO continuation character to avoid inserting a blank into the
statement.

/* REXX */
"IMFEXEC IMSTRAN ADDPART ’AB960C10,RIVET,74’"

CLIST EXEC example:

IMFEXEC IMSTRAN ADDPART ’AB960C10,RIVET,74’
BMC Software, Inc., Confidential and Proprietary Information

12-118 MAINVIEW AutoOPERATOR Advanced Automation Guide

JES3CMD
JES3CMD

 This command issues a JES3 command through the subsystem interface. It
should be used only for JES3 releases prior to 2.2. IMFEXEC CMD should
be used for newer releases.

A response is not returned to the EXEC.

The following table describes the parameters.

Condition codes are listed in the following table.

Example

This example command displays JES3 status information about job
PROD1234 on the JES console.

/* REXX */
"IMFEXEC JES3CMD I,J=PROD1234"

CLIST EXEC example:

IMFEXEC JES3CMD I,J=PROD1234

Command Parameters

JES3CMD ’JES3 command’

Parameter Function Notes

Command The JES3 command to be issued The maximum length is 127 bytes. The JES3
command character specified in BBPARM
member BBISSP00 is automatically appended
to the front of the command. Refer to the
MAINVIEW Common Customization Guide for
details.

Value Description

0 Command was executed successfully

8 Invalid syntax used
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-119

JESALLOC
JESALLOC

Unlike the TSO ALLOCATE command, this command may be used to
allocate a subsystem data set even when a JES connect was performed (such
as, JES was started after the AutoOPERATOR subsystem).

The following table describes the parameters.

Condition codes are listed in the following table.

Command Parameters

JESALLOC DDNAME [CLASS] [SYSOUT]

Parameter Function Notes

DDNAME Name of the DD statement that is
be allocated.

The maximum length is eight characters and
must conform to the DD name specifications.

CLASS Class to be associated with this
SYSOUT DD statement. Specify
’*’ for the MSGCLASS of the STC.

This parameter is a one-character valid JES
output class.

SYSOUT A literal indicating that this DD
statement should be allocated to
SYSOUT.

Code this parameter to be compatible with
future extensions to this command.

Value Description

0 Command successfully executed

4 JES rejected the allocation request

8 Not connected to JES (started under MSTR and no JESCNCT card in
bbissp00)

16 Syntax error

20 DD name in use (use TSO free command first)
BMC Software, Inc., Confidential and Proprietary Information

12-120 MAINVIEW AutoOPERATOR Advanced Automation Guide

JESALLOC
Example

This example shows how to allocate a SYSOUT data set in the SYSOUT
class A to the DD statement ‘MYPRINT’.

/* REXX */
“IMFEXEC JESALLOC MYPRINT SYSOUT CLASS(A)”

CLIST EXEC example:

IMFEXEC JESALLOC MYPRINT SYSOUT CLASS(A)

Note: You can use the TSO FREE command to free this DD statement
again.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-121

JESSUBM
JESSUBM

Unlike the TSO SUBMIT command, this command may be used to allocate a
subsystem data set even when a JES connect was performed (such as, JES
was started after the AutoOPERATOR subsystem). Two advantages of this
command are as follows:

• It can submit a job directly from variables.

— It returns the job number of the submitted job in a variable.

Note: The JESSUBM command will not drive the TSO SUBMIT exit
IKJEFF10.

The following table describes the parameters.

Note: STEM() and DSN() are mutually exclusive; however, one or the
other must be specified.

Command Parameters

JESSUBM DSNAME | DS | DA | DSN
STEM

Parameter Function Notes

DSNAME | DS | DA |
DSN

Name of the data set to submit.
Sequential and partitioned data
sets are supported. When
specifying a partitioned data set, a
member name must be supplied.

Length can be from 1 to 44 characters
conforming to data set name specifications. The
data set must have an LRECL of 80.

STEM Set of REXX stem variables that
contain the JCL to be submitted.

Length can be from 1 to 26 characters
conforming to variable naming conventions. The
separator character between variable name and
index is ‘.’ (according to REXX stem variable
syntax). The variable with the index 0 is
assumed to contain the count of variables to be
processed.
Note that the variable contents should not
exceed 80 characters in length.
Contents in columns 72 through 80 is accepted.
BMC Software, Inc., Confidential and Proprietary Information

12-122 MAINVIEW AutoOPERATOR Advanced Automation Guide

JESSUBM
Condition codes are listed in the following table.

After a successful submit, the variable IMFJESNR is set to the job ID of the
submitted job (for example, JOB12345). If multiple jobs were submitted as a
stream, this variable contains the job ID of the first job in this stream.

Note: Use of this command is recommended over the traditional IMFEXEC
SUBMIT command.

Example 1

Submits the JCL contained in the PDS member
‘BAORAE.JCL.CNTL(IEFBR14)’

/* REXX */
“IMFEXEC SUBMIT DA(’BAORAE.JCL.CNTL(IEFBR14)’)”

CLIST EXEC example:

IMFEXEC SUBMIT DA(’BAORAE.JCL.CNTL(IEFBR14)’)

Value Description

0 Command successfully executed

4 JES rejected the allocation request

8 INTRDR cannot be dynamically allocated. This error can happen if
JES has not yet started.

12 Specified data set cannot be allocated or opened or data set LRECL
is less than or greater than 80, or data set name is too long.

16 Syntax error occurred.

20 Error processing input variables.

24 Not connected to JES (started under MSTR and no JESCNCT card is
in BBISSP00).

28 Invalid input data set or error writing to INTRDR.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-123

JESSUBM
Example 2

Submits the JCL contained in the variables S.1 and S.2.

/* REXX */
S.1=’//BAOBR14 JOB (3911),’ERNST’,CLASS=K,MSGCLASS=A,NOTIFY=BAORAE2’
S.2=’//IEFBR14 EXEC PGM=IEFBR14’
S.0=2
"IMFEXEC JESSUBM STEM(S)"

CLIST EXEC example:

S.1=’//BAOBR14 JOB
 (3911),'ERNST',CLASS=K,MSGCLASS=A,NOTIFY=BAORAE2’
S.2='//IEFBR14 EXEC PGM=IEFBR14'
S.0=2
IMFEXEC JESSUBM STEM(S)
BMC Software, Inc., Confidential and Proprietary Information

12-124 MAINVIEW AutoOPERATOR Advanced Automation Guide

LOGOFF
LOGOFF

This command terminates the connection between an EXEC and an OSPI
session. If the DISCONNECT parameter is not specified, it also logs off the
application and frees all internal resources associated with the session.

Refer to Chapter 8, “Interacting with VTAM Applications with OSPI” for
more information about using this command and OSPI.

The following table describes the parameters.

Condition codes are listed in the following table.

Command Parameters

LOGOFF SESSION()
[DISCONNECT]

Parameter Function Notes

SESSION() Specifies the session identifier that is
returned when establishing a session with
the LOGON command

Determined by the results of the LOGON
command.

DISCONNECT Request temporary disconnection of the
session

If specified, retains the session in the
background so it can be picked up by a
later LOGON command.
Otherwise, it issues a TERMSESS macro
against the application and closes the
VTAM ACB that communicates with the
application. This results in an unconditional
LOGOFF from the application. All internal
resources associated with this session are
freed.

Value Description

0 Command executed successfully

8 Syntax error or indicated session not found
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-125

LOGOFF
Example

This example command terminates a session previously established using a
LOGON command with a PREFIX() parameter specifying TSO.

REXX EXEC example:

/* REXX */
"IMFEXEC LOGOFF SESSION("TSOSESS")"

CLIST EXEC example:

IMFEXEC LOGOFF SESSION(&TSOSESS)
BMC Software, Inc., Confidential and Proprietary Information

12-126 MAINVIEW AutoOPERATOR Advanced Automation Guide

LOGON
LOGON

This command establishes a session between an EXEC and a VTAM
application and supplies the first screen output to the EXEC.

Refer to Chapter 8, “Interacting with VTAM Applications with OSPI” for
more information about using this command and OSPI.

The following table describes the parameters.

Command Parameters

LOGON [APPLID|ACB(Application name)]
[DATA|USERDATA(Userdata)]
[PREFIX(OSI|Prefix)]
[SESSION(Session identifier)]
[REQACB(ACB to use)]
[LOGMODE(D6327802|Logmode)]
[DEBUG|NODEBUG]
[NORECEIVE]

Parameter Function Notes

APPLID|ACB The ACB name of the application (to
establish a session with) as it is specified
in SYS1.VTAMLIST

Required if the SESSION parameter is
not specified. 1-8 alphanumeric
characters. The application must be
active and accepting LOGONs.

DATA| USERDATA Any data passed to the application during
logon processing

Maximum length is 80 characters.

PREFIX OSPI variable name prefix Must be exactly 3 characters long. The
first character must be an alpha
character.

SESSION Session identifier of a previously
disconnected session

When specified, this parameter indicates
that no new session should be
established but an existing session
reconnected.

REQACB ACB to use to communicate with the
application

Since the ACB name used will also
represent the terminal name when
connecting to an application, this
parameter may be used for applications
which allow access only from specific
terminals. If this ACB is unavailable for
whatever reason, the command will fail.

LOGMODE Logmode to use when requesting a
session

The logmode determines the screen
characteristics to emulate (in particular,
the virtual screen size).
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-127

LOGON
Condition codes are listed in the following table.

Example

This example command establishes a session to the application BTSO and
passes the string SYSUSER to it. All control variables have the prefix TSO
and no debugging messages are generated.

/* REXX */
"IMFEXEC LOGON APPLID(BTSO) DATA(SYSUSER) LOGMODE(D6327803) PREFIX(TSO)"
"IMFEXEC VGET TSOSESS LOCAL"

CLIST EXEC example:

IMFEXEC LOGON APPLID(BTSO) DATA(SYSUSER) LOGMODE(D6327803) PREFIX(TSO)
IMFEXEC VGET TSOSESS LOCAL

Following the successful execution of this LOGON command, the variable
xxxSESS (where xxx represents the session prefix) must be retrieved from
the local variable pool. If it is not retrieved, you cannot perform further
commands against this session.

The token contained in this variable uniquely identifies the session. The
default name for this variable is OSISESS. Refer to Chapter 8, “Interacting
with VTAM Applications with OSPI” for more information.

DEBUG|NODE- BUG Controls whether or not execution of all
activities against the resulting session
will execute in DEBUG mode

When specified, many messages about
internal activities are generated and
buffer snaps are taken.

NORECEIVE Specify this parameter when logging on
to an application that does not display an
initial panel before allowing the terminal
user to enter data.

Value Description

0 Command was executed successfully

4 A LOGON with the SESSION parameter was issued but failed to reestablish the
session

8 Syntax error or LOGON failed

Parameter Function Notes
BMC Software, Inc., Confidential and Proprietary Information

12-128 MAINVIEW AutoOPERATOR Advanced Automation Guide

MSG
MSG

This command logs a message in the BBI-SS PAS Journal log.

The following table describes the parameters.

Note: Specifying a null variable for Message text causes an error.

Condition codes are listed in the following table.

Example

This example sends a message to the BBI-SS PAS monitoring the target
named CICSPRDA. The message is logged on the remote Journal and no
entry is made on the originating system’s Journal.

/* REXX */
"IMFEXEC MSG ’MANUFACTURING DATABASE IS OFFLINE’ TARGET(CICSPRDA)"

CLIST EXEC example:

IMFEXEC MSG ’MANUFACTURING DATABASE IS OFFLINE’ TARGET(CICSPRDA)

Command Parameters

MSG ’Message text’
[TARGET=target name)]

 Parameter Function Notes

Message text Text of the message to issue Maximum length is 252 bytes.

TARGET Target system name 1-8 alphanumeric characters. Valid target
names are defined in the BBIJNT00
member of the BBPARM data set.

Value Description

0 Command was executed successfully

8 NODE is not found when TARGET is used (check BBINOD00 in BBPARM)

12 TARGET is not found when target is used (check BBIJNT00 in BBPARM)

16 NODE is not available
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-129

NOTIFY
NOTIFY

This command sends a request through AutoOPERATOR to issue a pager
call to the AutoOPERATOR Elan Workstation.

The following table describes the parameters.

Condition codes are listed in the following table.

Example

This example command notifies the individual SYSPROG through the Elan
Workstation, passing the information SYSTEM to the pager.

/* REXX */
"IMFEXEC NOTIFY NAME(SYSPROG) INFO(SYSTEM)"

CLIST EXEC example:

IMFEXEC NOTIFY NAME(SYSPROG) INFO(SYSTEM)

Command Parameters

NOTIFY NAME(Phone number)
[INFO(‘Text’)]

Parameter Function Notes

NAME The contact name defined to the Elan
Workstation

1-32 characters alphanumeric. Elan
equates this name to a telephone number
to be dialed.

INFO Any information to be passed and placed
on the pager

1-12 alphanumeric characters.
Text must be included in quote marks.

Value Description

0 Elan successfully passed the information

8 The request timed out

12 Elan could not execute the request

16 Elan communications were not established
BMC Software, Inc., Confidential and Proprietary Information

12-130 MAINVIEW AutoOPERATOR Advanced Automation Guide

POST
POST

This command notifies an EXEC that has issued the IMFEXEC WAIT
command that it can resume execution (for example, makes that EXEC
dispatchable again).

The following table describes the parameters.

Condition codes are listed in the following table.

Command Parameters

POST name
CODE(code)
TARGET(targetname)

Parameter Function Notes

name Specify a name that matches the name
specified by another EXEC using the
IMFEXEC WAIT command
The value of this parameter must match
the NAME parameter of a previously
executed IMFEXEC WAIT command.
Refer to “WAIT” on page 12-203 for more
information.

1-32 alphanumeric characters.

CODE(code) Optional. Can be 1-255 characters
If the code contains blanks, it must be
entered in single quotation marks.
Available to the reawakened EXEC in the
TSO variable IMFPOST.

1-255 alphanumeric characters.

TARGET(target) Target system name
Valid target names are defined in the
BBIJNT00 member of the BBPARM data
set.

1-8 alphanumeric characters.

Value Description

0 Name successfully posted

4 No waiting EXEC found

8 Node not found

12 Target not found

16 Node not available
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-131

POST
Example

This example posts the name TEST with a code of ABC to the target called
SYSA. An EXEC that is waiting for TEST to be posted will now be re-
enabled when TEST is posted. The value of the code can be examined by the
re-enabled EXEC by using the variable IMFPOST.

"IMFEXEC POST TEST CODE(ABC) TARGET(SYSA)"

CLIST EXEC example:

IMFEXEC POST TEST CODE(ABC) TARGET(SYSA)
BMC Software, Inc., Confidential and Proprietary Information

12-132 MAINVIEW AutoOPERATOR Advanced Automation Guide

RECEIVE
RECEIVE

This command issues a VTAM RECEIVE against an OSPI session. It is used
for OSPI sessions with applications that use non-standard protocol.

Refer to Chapter 8, “Interacting with VTAM Applications with OSPI” for
more information about using this command and OSPI.

When using this statement, you must remember to code IMFEXEC with the
RECEIVE command. If you do not, you might cause the TSO/E RECEIVE
command to be invoked.

The following table describes the parameters.

Condition codes are listed in the following table.

Example

This command attempts to receive another data packet from the session
identified by the CNMSESS variable.

/* REXX */
"IMFEXEC RECEIVE SESSION("CNMSESS")"

CLIST EXEC example:

IMFEXEC RECEIVE SESSION(&CNMSESS)

Command Parameters

RECEIVE [TIMEOUT(10|n)]

 Parameter Function Notes

TIMEOUT The time to wait, in seconds, for data to
arrive

Numeric value in the range 0-9999.

Value Description

0 Command was executed successfully, data was received

4 No data was available during the given interval
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-133

RES
RES

This command executes basic SYSPROG services commands.

To use this command, you must have the AutoOPERATOR for MVS
component installed. If SYSPROG is installed but AutoOPERATOR for
MVS is not, this command will not function. When AutoOPERATOR for
MVS is not installed, use the IMFEXEC CMD (MVS command with
response) command to access basic SYSPROG services as an MVS started
task using an MVS MODIFY command to the SYSPROG services task.

Output from SYSPROG service commands is placed in LOCAL variables
LINE1 through LINEnn, where IMFNOL contains the number of lines
returned. Parentheses in the output are removed. These variables must be
retrieved using an IMFEXEC VGET command before they can be used in an
EXEC.

The following table describes the parameters.

Condition codes are listed in the following table.

Command Parameters

RES SYSPROG command
or
’SYSPROG command’ WAIT(60|nnnn)

Parameter Function Notes

SYSPROG service
command

The SYSPROG service command,
including any required parameters

Any supported SYSPROG services
command.

WAIT(60|nnnn) Amount of time to wait for a response
from the command

The default is 60 seconds or nnnn,
which can be a value from 0 to 9999
seconds.

Value Description

0 Command was executed successfully

8 No service parameter was passed when required

12 Command timed out in interface to SYSPROG service (the response time
exceeded 60 seconds).
Note: SYSPROG service commands that require a user response (for example,
CHAP) cause a timeout in the SYSPROG service interface. Refer to the RESOLVE
PLUS Reference Manual for more information about how to determine if a
command requires a response.

20 AutoOPERATOR for MVS is not installed.
BMC Software, Inc., Confidential and Proprietary Information

12-134 MAINVIEW AutoOPERATOR Advanced Automation Guide

RES
Example

The output from this example is automatically put into variables named
LINE1 - LINEnn, where nn is the number of lines in the output. The variable
ASML1 is declared to contain a list of seven variables. The first line of the
output is placed into ASML1, which parses the line automatically into the
seven variables.

/* REXX */
"IMFEXEC RES ASM"
"IMFEXEC VDCL ASML1 LIST(V1 V2 V3 V4 IPLTYPE V6 V7)"
"IMFEXEC VGET LINE1 INTO(ASML1) LOCAL"
"IMFEXEC VPUT IPLTYPE"
"IMFEXEC MSG 'AN IPL "IPLTYPE "START WAS PERFORMED’”

CLIST EXEC example:

IMFEXEC RES ASM
IMFEXEC VDCL ASML1 LIST(V1 V2 V3 V4 IPLTYPE V6 V7)
IMFEXEC VGET LINE1 INTO(ASML1) LOCAL
IMFEXEC VPUT IPLTYPE
IMFEXEC MSG 'AN IPL &IPLTYPE START WAS PERFORMED AT &SYSTIME'

The IPLTYPE variable is put into the SHARED variable pool and a message
is issued to the Journal to indicate that a certain type of IPL start was
performed.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-135

SCAN
SCAN

This command performs any of the following actions on the VTAM buffer
image of an OSPI session:

• Finds a specific character string

• Positions the cursor in the first input field following a specified character
string

• Retrieves data from the buffer image into user-defined variables To
perform all three functions, you must use the parameters SESSION,
ROW, and COLUMN. The default for ROW and COLUMN is 1. There is
no default for SESSION.

For more information about performing these functions and which additional
parameters you must use, refer to “Using Parameters” on page 12-137.

Refer to Chapter 8, “Interacting with VTAM Applications with OSPI” for
more information about using this command and OSPI.

The following table describes the parameters.

Command Parameters

SCAN [ROW(Starting row)]
[COL(Starting column)]
[TEXT(Target text)]
VARIABLE(Variable name)|[POSITION]
[LENGTH(n)]
SESSION(Session identifier)
[CASE|NOCASE]
[TRIM|NOTRIM]

Parameter Function Notes

ROW The row in which to begin the scan Numeric value in the range one through the
maximum number of rows supported by the
emulated terminal. Default is 1.

COL The column in which to begin the scan Numeric value in the range 1-80. Default is
1.

TEXT The text to scan for Maximum length is 255 characters
Note: TEXT and VARIABLE cannot be
coded together on the same statement.

VARIABLE The name of the variable to receive the
data

Do not specify a leading ampersand (&).
Either VAR or POSITION or both must be
specified.
Note: TEXT and VARIABLE cannot be
coded together on the same statement.
BMC Software, Inc., Confidential and Proprietary Information

12-136 MAINVIEW AutoOPERATOR Advanced Automation Guide

SCAN
Using Parameters

This section describes which parameter you must use to perform certain
functions with IMFEXEC SCAN.

Searching for string and positioning the cursor:

The following additional parameters must be used with IMFEXEC SCAN
when you want to either search for a string or position the cursor:

• TEXT

Indicates a request to find a text string.

The parameters VARIABLE, LENGTH, and TRIM do not apply when
searching for text (and can, in some cases, cause syntax errors). Do not
specify any of these parameters when you use TEXT.

• CASE

Indicates whether to perform a case-sensitive search for TEXT keyword.

• POSITION

Indicates whether or not to position the cursor. If POSITION is not
specified, the position will not changed.

LENGTH The number of characters to place into
the target variable

Required with VAR. Numeric value in the
range 1-255.

SESSION Session identifier of the OSPI session
that should be accessed

Provided by the LOGON command.

CASE Performs a case-sensitive scan for TEXT Default is NOCASE.

NOCASE Performs a non-case-sensitive scan for
TEXT

TRIM All leading and trailing blanks, nulls, and
control characters are to be removed
from the returned variable

Default is NOTRIM

NOTRIM The data is placed into the target
variable exactly as found

POSITION The cursor is automatically positioned in
the next input field following the indicated
character string

Either VAR or POSITION or both must be
specified.

Parameter Function Notes
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-137

SCAN
Retrieving data into variables:

The following additional parameters must be used with IMFEXEC SCAN
when you want to retrieve data into variables:

• VARIABLE

Indicates a request to retrieve data.

The parameters TEXT, CASE, and POSITION do not apply when
retrieving data (and can, in some cases, cause syntax errors). Do not
specify any of these parameters when you use VARIABLE.

• LENGTH

This is required to retrieve data.

• TRIM

Indicates whether or not to remove trailing blanks, nulls, and control
characters from the returned variable.

Condition codes are listed in the following table.

Examples

This section contains examples using the IMFEXEC SCAN command
statement. A brief discussion follows each example.

Example 1

/* REXX */
"IMFEXEC SCAN TEXT(USERID) VAR(MYUSER) LENGTH(25) TRIM NOCASE",
 "SESSION("TSOSESS")"

Value Description

0 Command was executed successfully; text was found

4 Text not found

8 One of the following:
• Syntax error
• Conflicting parameters specified
• Session not found
BMC Software, Inc., Confidential and Proprietary Information

12-138 MAINVIEW AutoOPERATOR Advanced Automation Guide

SCAN
CLIST EXEC example:

IMFEXEC SCAN TEXT(USERID) VAR(MYUSER) LENGTH(25) TRIM NOCASE
 SESSION(&TSOSESS)

This example command scans the screen beginning at the upper left-hand
corner for the character string, USERID. The scan is performed against the
session designated by the TSOSESS variable.

The scan is not case-sensitive. The 25 characters following the string are
placed into the variable MYUSER after trailing and leading blanks have been
removed.

Example 2

/* REXX */
"IMFEXEC SCAN ROW(10) COL(10) POSITION TEXT(A) LENGTH(1)",
 "SESSION("OSISESS")"

CLIST EXEC example:

IMFEXEC SCAN ROW(10) COL(10) POSITION SESSION(&OSISESS)

This example places the cursor in the input field after row 10, column 10, for
the virtual screen buffer with the logical unit specified by the variable
OSISESS. This command is equivalent to placing the cursor on row 10,
column 10, and pressing the TAB key.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-139

SELECT
SELECT

 This command invokes an EXEC or a program.

The following table describes the parameters.

Note: If you use the IMFEXEC SELECT command to schedule an EXEC
and you do not specify a target and WAIT(YES) is specified, the
LOCAL variable pool is shared between the calling EXEC and the
called EXEC.

Command Parameters

SELECT EXEC(Execname [p1 ... pn])|PGM(Program name)
[PARM(’p1 ... pn’)]
[PRI(NORMAL|HIGH)]
[WAIT(NO|YES)]
[TARGET(Target system)]

Table 12-6 SELECT Command Parameters

Parameter Function Notes

EXECname Name of EXEC to invoke, including
all parameters

Maximum length is 255 characters. Either EXEC or
PGM must be specified.

PGM The name of a user-written routine
stored in the BBLINK data set on
the local BBI-SS PAS. Refer to
“Using Other Programming
Languages” on page 12-141 for
more information.

The name of the routine must begin with the prefix
IMFUxxxx.
Either PGM or EXEC must be specified.

PARM A list of parameters to be passed to
the program

Either NORMAL or HIGH.
Applies only to EXEC keyword. It overrides
AAOEXP00 parameters.
PRI is valid with WAIT(NO) but not with WAIT(YES).
PRI is ignored with WAIT(YES).

PRI Execution priority of the EXEC to be
invoked

WAIT Suspension criterion for invoking
EXEC

Either YES or NO. NO causes the EXEC to be
queued for execution using a different EXEC thread.
YES causes the EXEC to execute under the same
thread as the calling EXEC.
If YES is specified, the invoking EXEC waits for the
invoked EXEC to terminate. WAIT(YES) is required
to retrieve a return code from the invoked EXEC.
WAIT(YES) is not supported for EXECs scheduled to
a remote system with TARGET.
If both WAIT and TARGET are specified, the EXEC is
queued to the TARGET system, but WAIT is ignored.

TARGET Identifies the target SS on which the
command will be executed

The name must be defined in the BBPARM member
BBIJNT00 as either the target name or BBI-SS PAS
subsystem ID.
BMC Software, Inc., Confidential and Proprietary Information

12-140 MAINVIEW AutoOPERATOR Advanced Automation Guide

SELECT
Condition codes are listed in the following table.

Example

This example command invokes the EXEC CHKENQ on the remote SS
SYSB, passing it the parameter SYS2.PROD.XLIB.

/* REXX */
"IMFEXEC SELECT EXEC(CHKENQ SYS2.PROD.XLIB) TARGET(SYSB)"

CLIST EXEC example:

IMFEXEC SELECT EXEC(CHKENQ SYS2.PROD.XLIB) TARGET(SYSB)

This section also contains a discussion about how you can use other
programming languages when you use the IMFEXEC SELECT command
and how to determine condition codes when you select other program to run
from an EXEC. Refer to “Using Other Programming Languages” on page 12-
141 and “Understanding Completion Codes for EXEC-Initiated EXECs with
WAIT(YES) and User-Written Programs” on page 12-143.

Using Other Programming Languages

Programming languages in addition to REXX and CLIST, such as Assembler,
PL/I and COBOL, may be used to implement complex automation tasks.
These programs are called user-written programs. A user-written program is
called only from an EXEC, is loaded from the BBILOAD library in the BBI-
SS PAS, and must begin with the prefix IMFUxxxx to prevent a conflict with
future AutoOPERATOR program names.

Value Description

0 Command was executed successfully

8 One of the following is true:
• Target specified is not found in BBIJNT00
• EXEC specified but is not found in BBPROC
• Program name length is greater than 8 characters
• Program is not found

12 One of the following is true:
• EXEC name specified is more than 8 characters long
• Program does not start with IMFU

16 Invalid syntax used
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-141

SELECT
At entry the program will be given a parameter list specifying the name of the
EXEC, the originating BBI-SS PAS Address Space ID, and the contents of
the parameter string.

Parameter Description

WORD1 A count of the number of parameters (to maintain compatibility
with PL/I). This number is always 5.

WORD2 A pointer to an 8-character field containing the name of the EXEC
scheduling the program, left-justified.

WORD3 A pointer to a 4-character field containing the BBI-SS PAS
Address Space ID of this BBI-SS PAS, left-justified.

WORD4 The length of the parameter string pointed to by WORD5.

WORD5 A pointer to the parameter string.

This program gains control in KEY 8, problem state, and is afforded ESTAE
protection by AutoOPERATOR. The execution of the calling EXEC is
suspended until the User-written program terminates. The program inherits
the APF authorization of the subsystem.

The high-order bit of the last word in the parameter list is set to 1. The
program should be coded and link edited as re-entrant because it could be
called from several tasks. If serialization is required, it must be provided by
the user program using ENQ facilities of MVS. The program can be coded to
execute in either 24-bit or 31-bit mode.

A user-written program may access and manipulate TSO variables. BMC
Software recommends that you be familiar with TSO internals before
attempting this. One documented programming interface for manipulating
TSO variables is the IKJCT441 program.

The following list describes the register contents on entry to a user-written
program:

Register Entry Description

R1 Pointer to the parameter list

R2 - R12 Unpredictable

R13 An 18-word save area

R14 The return address to AutoOPERATOR

R15 The entry-point address of the user exit
BMC Software, Inc., Confidential and Proprietary Information

12-142 MAINVIEW AutoOPERATOR Advanced Automation Guide

SELECT
The following describes the register contents expected by AutoOPERATOR
when control is returned from the user-written program.

Register Exit Description

R15 The return code made available to the calling EXEC in the BBI
variable &IMFRC

AutoOPERATOR expects the program to return control in problem state,
KEY 8. If the program abends, IMFCC is set to 20.

Understanding Completion Codes for EXEC-Initiated EXECs with
WAIT(YES) and User-Written Programs

Both EXEC-initiated EXECs with WAIT(YES) and user-written programs
gain control of the thread while the execution of the initiating EXEC is
suspended. When the execution of the initiating EXEC is resumed the
initiating EXEC can determine the success of the called EXEC or program by
testing the BBI variables IMFCC and IMFRC.

If IMFCC is zero, meaning the EXEC (with the WAIT(YES) parameter) or
user-written program was successfully invoked, a separate local variable,
IMFRC, will be set with the return code from the program or EXEC. A
selected EXEC with WAIT(YES) can return this value by using the EXIT
command. See “EXIT” on page 12-107. For example:

IMFEXEC EXIT CODE(12)

causes IMFRC to be set to 12 when the calling EXEC receives control.

The following values of IMFCC are valid for SELECTed EXECs and
programs:

Value Description

00 Program or EXEC scheduled

08 Program or EXEC not found

20 Severe error
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-143

SEND
SEND

 This command sends a message to a TSO or IMS user.

The following table describes the parameters.

Note: The parameters of the TSO SEND command LOGON, SAVE, WAIT,
and so on are not supported. To perform similar functions, use the
AutoOPERATOR IMFEXEC command statement IMFEXEC CMD
#SE.

Condition codes are listed in the following table.

Example 1

This command sends a message to the TSO user CWB1. If the user is not
currently logged on, the message will be discarded.

REXX EXEC example:

/* REXX */
"IMFEXEC SEND ’I AM SENDING YOU THIS MESSAGE’ USER(CWB1)"

Command Parameters

SEND ’Msgtext’
LTERM(Terminal)|USER(TSO USERID)

Parameter Function Notes

Msgtext The message to be sent to the user The maximum length of the message text
is 252 bytes when LTERM is coded;
otherwise, the maximum length is 120
bytes. This includes the SEND ’ ’ USER()
portion of the command.

LTERM The IMS Lterm to receive the message Either LTERM or USER must be specified.

USER The TSO user ID to receive the message Either LTERM or USER must be specified.

Value Description

0 Command was executed successfully

8 Length of command exceeds maximum

12 No destination was supplied

16 Invalid syntax used
BMC Software, Inc., Confidential and Proprietary Information

12-144 MAINVIEW AutoOPERATOR Advanced Automation Guide

SEND
CLIST EXEC example:

IMFEXEC SEND ’I AM SENDING YOU THIS MESSAGE’ USER(CWB1)

Example 2

This command sends a message to the IMS LTERM R35769D of the IMS
system the BBI-SS PAS is connected to.

REXX EXEC example:

/* REXX */
"IMFEXEC SEND ’I AM SENDING YOU THIS MESSAGE’ LTERM(R35769D)"

CLIST EXEC example:

IMFEXEC SEND ’I AM SENDING YOU THIS MESSAGE’ LTERM(R35769D)
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-145

SESSINF
SESSINF

This command writes OSPI session specific information to the OSPISNAP
DD and is used in debugging OSPI EXECs. Information includes the current
contents of the buffer image, cursor position and keyboard status, and a
SNAP dump of all VTAM data exchange, including the RPL.

Refer to Chapter 8, “Interacting with VTAM Applications with OSPI” for
more information about using this command and OSPI.

The following table describes the parameters.

Note: The SNAP dump information produced is for BMC Software support
purposes only.

Condition codes are listed in the following table.

Example

This example command dumps all session related information designated by
IMSSESS to the OSPISNAP DD. This includes all session variables and the
virtual screen image.

Command Parameters

SESSINF SESSION(Session identifier)

Parameter Function Notes

SESSION The session identifier of the session to
display

This identifier is returned by the LOGON
command.
Only one EXEC can use this command at
a time. You must serialize the use of this
command.

Value Description

0 Command was executed successfully

8 Indicates one of the following:
• Invalid syntax was used
• Session not found
BMC Software, Inc., Confidential and Proprietary Information

12-146 MAINVIEW AutoOPERATOR Advanced Automation Guide

SESSINF
REXX EXEC example:

/* REXX */
"IMFEXEC VENQ ’BOOLE’ EXC"
"IMFEXEC SESSINF SESSION("IMSSESS")"
"IMFEXEC VDEQ ’BOOLE’"

CLIST EXEC example:

IMFEXEC VENQ ’BOOLE’ EXC
IMFEXEC SESSINF SESSION(&IMSSESS)
IMFEXEC VDEQ ’BOOLE’
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-147

SETTGT
SETTGT

This command resets the EXECs target and adjusts the contents of the
IMFSYSID variable.

The following table describes the parameters.

Example

This example command shows how CICS task information is retrieved from
the CICSPROD system and CICS terminal information is retrieved from the
CICSTEST system.

Warning! The IMFEXEC SETTGT command statement is used for CICS
regions only. To set a target which is not CICS region, use:
"IMFEXEC SELECT EXEC(execabc) TARGET(tgtname)"

REXX EXEC example:

/* REXX */
"IMFEXEC SETTGT ’CICSPROD’"
"IMFEXEC CICS QUERY TASK"
"IMFEXEC SETTGT ’CICSTEST’"
"IMFEXEC CICS QUERY TERMINAL"

Command Parameters

SETTGT ’Target name’

 Parameter Function Notes

Target name The system ID of the new target 1-8 alphanumeric characters. Only targets
assigned to the BBI-SS PAS that this
EXEC is currently running on are
acceptable. Valid targets and their BBI-SS
PAS assignments are specified in the
BBIJNT00 member of the BBPARM data
set. Value must be enclosed in single
quotes.
BMC Software, Inc., Confidential and Proprietary Information

12-148 MAINVIEW AutoOPERATOR Advanced Automation Guide

SETTGT
CLIST EXEC example:

IMFEXEC SETTGT ’CICSPROD’
IMFEXEC CICS QUERY TASK
IMFEXEC SETTGT ’CICSTEST’
IMFEXEC CICS QUERY TERMINAL
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-149

SHARE
SHARE

Scans the LOCAL pool for matching variable names. Every match is
recorded. At the end of the EXEC the values for all these matches are
gathered and transferred back to the calling EXEC (AOEXEC command).
The use of this command is only meaningful in an EXEC that is driven by
AOAnywhere.

The following table describes the parameters.

At the time of the IMFEXEC SHARE command, the LOCAL pool is
scanned for matching variable names. Every match is recorded and at the end
of the EXEC, the values for all these matches are gathered and transferred
back to the calling EXEC (AOEXEC command). For IMFEXEC SHARE to
work, at least one variable has to be specified on the AOEXEC SELECT
VAR() or SHARE() statement.

For example ’IMFEXEC SHARE (A B C)’ causes the EXEC to determine
whether variables A, B, or C currently exist in the LOCAL pool. If these
variables do not exist, NO data is transferred back to the EXEC. If they exist
at the time of the command, they are recorded.

Once the EXEC terminates, their values are gathered and set in the function
pool of the invoking AOEXEC EXEC. This means that an ’IMFEXEC
SHARE(*)’ will cause all current variables in the LOCAL pool to be
recorded and at EXEC termination, transferred back to the invoking EXEC.

Command Parameters

SHARE Variable name | (var1 var2...varn)

Parameter Function Notes

Variable Name of a variable or variables that will
be searched for in the LOCAL variable
pool and transferred back to the calling
EXEC (AOEXEC command).

You can list one variable or a list of
variable names. Multiple variable names
must be enclosed in parentheses.
You can list either fully qualified variable
names or variable name patterns.
Patterns must follow coding conventions
such as
• A*B+
• A*
• *
This command overrides any VAR()
parameters specified on the AOEXEC
SELECT statement.
BMC Software, Inc., Confidential and Proprietary Information

12-150 MAINVIEW AutoOPERATOR Advanced Automation Guide

SHARE
Condition codes are listed in the following table.

Example

The pattern match happens at the time of the IMFEXEC SHARE statement.
If at the time the statement executes and no matches are found in the LOCAL
pool but subsequently new variables are created that would have matched
these variables, nothing is transferred back. For example:

REXX EXEC example:

/* REXX */
A=1
B=2
"IMFEXEC VPUT (A B) LOCAL"
"IMFEXEC SHARE (C)"
C=3
"IMFEXEC VPUT (C) LOCAL"

CLIST EXEC example:

PROC 0
SET A=1
SET B=2
IMFEXEC VPUT (A B) LOCAL
IMFEXEC SHARE (C)
SET C=3
IMFEXEC VPUT (C) LOCAL

In this example, the variable C is NOT returned to the invoking EXEC.

The following sample code shows how the variable C is returned to the
invoking EXEC:

Value Description

12 This EXEC is not running under AOEXEC control. Therefore the IMFEXEC SHARE
statement is inapplicable.

16 Syntax error
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-151

SHARE
REXX EXEC example:

/* REXX */
A=1
B=C
C=3
"IMFEXEC VPUT (A B C) LOCAL"
"IMFEXEC SHARE (C)"

CLIST EXEC example:

PROC 0
SET A=1
SET B=C
SET C=3
IMFEXEC VPUT (A B C) LOCAL
IMFEXEC SHARE (C)
BMC Software, Inc., Confidential and Proprietary Information

12-152 MAINVIEW AutoOPERATOR Advanced Automation Guide

STDTIME
STDTIME

This command instructs the Elan Workstation to use its modem to obtain the
current Universal Coordinated Time (UCT). The current UCT, as well as the
local date and time, are returned as variables. Refer to the AutoOPERATOR
Elan Administration Guide for more information.

The following table describes the parameters.

Condition codes are listed in the following table.

Command Parameters

STDTIME Values can be:
Var1
Var2
Var3
Var4

Parameter Function Notes

Var1 Name of variable to receive the GMT date

Var2 Name of variable to receive the GMT time

Var3 Name of variable to receive the local date

Var4 Name of variable to receive the local time

Value Description

0 Command was executed successfully

4 A variable name is invalid

8 The request timed out

12 Elan could not execute the request

16 Elan communications were not established
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-153

STDTIME
Example

This example sets the system clock using the local time and date obtained by
the Elan Workstation.

REXX EXEC example:

/* REXX */
"IMFEXEC STDTIME V1 V2 LDATE LCLOCK"
"IMFEXEC CMD #SET DATE="LDATE",CLOCK="LCLOCK

CLIST EXEC example:

IMFEXEC STDTIME V1 V2 LDATE LCLOCK
IMFEXEC CMD #SET DATE=&LDATE,CLOCK=&LCLOCK
BMC Software, Inc., Confidential and Proprietary Information

12-154 MAINVIEW AutoOPERATOR Advanced Automation Guide

SUBMIT
SUBMIT

This command submits a job from a data set to MVS for execution in the
background. Installation SUBMIT exits are honored.

The user ID associated with the submitted job is the value specified with the
PREFIX= parameter of BBPPARM member AAOEXP00.

The following table describes the parameters.

The following TSO SUBMIT keywords are not supported by IMFEXEC
SUBMIT:

• HOLD

• NOHOLD

• NOTIFY

• NONOTIFY

• PASSWORD

• NOPASSWORD

• USER()

• NOUSER

Condition codes are listed in the following table.

Command Parameters

SUBMIT ’Data set name’

Parameter Function Notes

Data set name The data set name or name of a member
of a partitioned data set that defines a JCL
stream

A member name of * is not supported. Job
cards cannot be automatically created and
must be supplied within the user submitted
job stream.

Value Description

0 Command was executed successfully

16 Error, job was not submitted
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-155

SUBMIT
Example

This example submits the JCL stream DBREC010 for execution.

REXX EXEC example:

/* REXX */
"IMFEXEC SUBMIT ’SYSP.PROD.JOBS(DBREC010)’"

CLIST EXEC example:

IMFEXEC SUBMIT ’SYSP.PROD.JOBS(DBREC010)’

Note: The IMFEXEC SUBMIT command works only if it is issued after
JES is started.
BMC Software, Inc., Confidential and Proprietary Information

12-156 MAINVIEW AutoOPERATOR Advanced Automation Guide

TAILOR
TAILOR

Using skeleton tailoring, you can manipulate the contents of members of
partitioned data sets and REXX or TSO CLIST variables. Skeleton tailoring
reads the member line by line (or examines the variables) while substituting
variable indicators within these lines or variables. At the same time, it
follows a number of directives to generate a member of a partitioned data set
(or a set of output variables).

Skeleton tailoring can be used for a number of purposes including JCL
tailoring. Since its output can be a set of variables and these variables can be
directly submitted by an IMFEXEC JESSUBM command, you need to
review the feasibility of using the IMFEXEC TAILOR and IMFEXEC
JESSUBM command together.

The following table describes the parameters.

Command Parameters

TAILOR MEMIN() | STEMIN()
MEMOUT() | STEMOUT()
[DD()]
[INCLUDE()]
[SEARCH()]
[DEBUG] | NODEBUG]

Table 12-7 TAILOR Command Parameters

Parameter Function Notes

DD Name of the DD statement where the
MEMIN() member is read and the
MEMOUT() member is written.

Can be a maximum eight characters in
length and must conform to the DD
name specification.

MEMIN() Name of the PDS member to read Can be a maximum eight characters in
length and must conform to the member
name specification.
Either DD() and MEMIN() or STEMIN()
must be specified. When MEMIN() is
specified DD() must also be specified.
MEMIN() and STEMIN() are mutually
exclusive.

MEMOUT() Name of the PDS member to which the
output is written

Can be a maximum eight characters in
length and must conform to the member
name specification. MEMOUT() and
STEMOUT() are mutually exclusive.
Either DD() and MEMOUT() or
STEMOUT() must be specified. When
MEMOUT() is specified DD() must also
be specified.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-157

TAILOR
STEMIN() Variable stem prefix for input lines. This
prefix is followed by a period which is
followed by a number. The "var.0"
contains the count of variables supplied
and var.1 to var.n contain the data input
to the tailor function.

Can be a maximum of 26 characters in
length, and must conform to variable
name conventions.
 Either DD() and MEMIN() or STEMIN()
must be specified. When MEMIN() is
specified DD() must also be specified.
MEMIN() and STEMIN() are mutually
exclusive.
The 0 index is assumed to contain the
number of variables to process.
If var.0 is greater than 99999, an error
message will be issued, a non-zero
return code set, and the last variable
used will be var.99999.

INCLUDE() Name of a DD statement from which to
process)INCLUDE directives

Optional, if not specified, no
substitutions are performed.
Can be a maximum eight characters in
length and must conform to the DD
name conventions. This DD statement
will be used for all directives.

SEARCH() Search order used to satisfy variable
references. This parameter defines the
variable pools and the order to process
them.

Optional.
Possible values are
TSO
LOCAL
SHARED
PROFILE
Multiple values can be specified. They
can be combined or separated by
commas or spaces.
The search order is position dependent
and can contains multiple values.
If you specify SEARCH(‘’), no variable
substitution is performed but the
directives are interpreted.
SEARCH() must include TSO if the input
stream uses the)DO directive with an
index specified.
Long variables are not supported.
The default is ‘’, which means no
substitution.

Table 12-7 TAILOR Command Parameters (continued)
BMC Software, Inc., Confidential and Proprietary Information

12-158 MAINVIEW AutoOPERATOR Advanced Automation Guide

TAILOR
Condition Codes

The following table describes condition codes returned after issuing an
IMFEXEC TAILOR command statement.

Examples of Variable Substitution

In the following example, the member Recover is read from the PDS
allocated with the DD statement AOJCL. Variable substitution as well as any
tailoring processing is performed.When a variable is found in the input
stream, the TSO pool (followed by the local pool) is searched for the
purposes of substitution.

STEMOUT() Variable stem prefix for output lines. This
prefix is followed by a period which is
followed by a number. The "var.0"
contains the count of variables created
from the TAILOR function, and var.1 to
var.n contain the data lines returned
from the tailor function.

The result of the tailoring processing is
saved into the stem variables. All
existing variables are overwritten and the
number of generated variables is placed
into the 0 index. The maximum length is
26 characters and it must conform to the
variable naming conventions.
Either DD() and MEMOUT() or
STEMOUT() must be specified. When
MEMOUT() is specified DD() must also
be specified.
If more than 99999 lines are generated,
an error message will be issued, a non-
zero return code will be set, and the last
variable generated will be var.99999.

DEBUG Traces every line and every pass to the
BBI journal.

Value Description

4 An error occurred while reading input for tailoring from variables or a PDS member.
Messages indicate the specific condition.

8 A catastrophic error processing the input occurred.

12 An error occurred while writing output to variables or a PDS member.

16 A syntax error occurred while parsing parameters, such as mutually exclusive or
inclusive.

Table 12-7 TAILOR Command Parameters (continued)
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-159

TAILOR
The results of the search are placed into the REXX stem variable
TEMPTLR.X.

REXX EXEC example:

“IMFEXEC TAILOR DD(AOJCL) MEMIN(RECOVER) SEARCH(TSO LOCAL)STEMOUT(TEMPTLR)”

CLIST EXEC example:

IMFEXEC TAILOR DD(AOJCL) MEMIN(RECOVER) SEARCH(TSO LOCAL)STEMOUT(TEMPTLR)

Note: The total number of output variables must not exceed 99,999.

IMFEXEC TAILOR Processing

The following commands are interpreted in the data passed to the IMFEXEC
TAILOR command, either from a PDS or from in-core variables. Note that
the control statements are subject to variable substitution processing.

Control Statement Function

)INCL (membername) Reads the contents of the member (member name) and inserts it into the
current skeleton tailoring process. The contents are processed using variable
substitution and processing directives are interpreted. (Member name) can be a
variable.

)DO (times) [(x)] Processes the data the number of times indicated by (times). Times is a
numeric constant or a variable (including stem variable). For example:
)DO VAR.0 index
The second operand (x) is optional. During processing the variable (x) is set to
the current iteration, beginning with 1.
This control statement enables the iterative processing of multiple variables.
The end of the processing loop is indicated by an)END directive or it is
assumed at the end of the input stream. Nested loops can be used.
When using [(x)], the SEARCH() keyword on the command must include TSO.
See “Example 5” on page 12-166.

)END Indicates the end of a loop.
BMC Software, Inc., Confidential and Proprietary Information

12-160 MAINVIEW AutoOPERATOR Advanced Automation Guide

TAILOR
Variable Substitution

A variable is assumed when the variable recognition character is detected.
This character defaults to an ampersand (&) and can be changed for each
member processed through the)DEFAULT directive.

The following three rules apply when processing a line:

)SUBSTITUTION (ON) |
(OFF)

Turns variable substitution ON or OFF. The)SUBSTITUTION directive can be
followed by one or two parameters. The first parameter must be present and
either ’ON’ or ’OFF’. The second parameter (which is optional) can be a valid
non-negative integer in the range from 0 to 99. It specifies the number of
variable scanning passes to perform on every input line. This parameter is
equivalent to the count on the DEFAULT statement. The SUBSTITUTION
statement can be specified anywhere in the input stream, whereas the
DEFAULT statement is only valid as the first statement in a member or stem.
You can dynamically change the levels of substitution within the input stream.
For example:

)SUBSTITUTION ON 16
some lines1
)SUBSTITUTION ON 2
some lines2
)SUBSTITUTION OFF
some lines3
)SUBSTITUTION ON
Note: The default value of ON is always the last used value. If you use OFF,
then ON (with no number) as in this example, the default value of ON is 2.
In the following example, the default value of ON is 16 (the last used value).

)SUBSTITUTION ON 16
)SUBSTITUTION OFF
)SUBSTITUTION ON
In the following example, the default value of ON is 4 (the last used value).

)SUBSTITUTION ON 16
)SUBSTITUTION OFF 4
)SUBSTITUTION ON

)CM Indicates a comment line. It will be ignored during processing.

)DEFAULT xyzz X: Directive recognition character (default is ‘)’).
Y: Variable recognition character (default ‘is &’).
ZZ: The number of variables substitution passes to perform (two-digits ranging
from 0 to 16).
Note: This directive applies to the current member only. When a member is
included, it temporarily overrides any previous directives in effect. No variable
substitution will be performed for a line containing the this directive.

Control Statement Function
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-161

TAILOR
Step 1 When a variable is detected in the input stream, it is replaced with its value.
A variable is any string preceded by an &, which can be overridden by the
)DEFAULT directive.

Step 2 The characters that follow the & up to a blank or a slash (\) are assumed to
be the variable name. If the variable name is followed by a \, the \ is
discarded during processing.

Step 3 The contents of a variable string beginning with two ampersand signs (&&x)
are assumed to be that string less one ampersand sign (per substitution pass).

If a variable is not found, nothing is inserted and the variable instruction is
discarded, which is comparable to the variable substitution in the Rules
Processor.

Optionally, a variable (without intervening blanks or \) can be followed
directly by one or two parameters, separated by colons. These parameters
must be constants and must allow for substring processing for the variable.
The first parameter indicates the beginning location in the contents of the
variable, while the second one designates the length of the substring. If the
length of the substring should exceed the actual length of the contents of the
variable, the variable will be implicitly truncated.

Example: &VAR:2

Resolves the variable VAR, and inserts its contents beginning with the second
character, into the output stream.

Example: &VAR:2:3.

Resolves the variable VAR and inserts its contents, beginning with the second
character for a length of three, into the output stream. If the variable contents
are shorter than four characters, substitution ends with the last character.
BMC Software, Inc., Confidential and Proprietary Information

12-162 MAINVIEW AutoOPERATOR Advanced Automation Guide

TAILOR
Examples of Variable Substitution

The following examples demonstrate processing in increasing complexity.

Example 1

The following TSO variables exist:

The following input stream is processed:

REXX EXEC example:

/* rexx */
in.1 = "//JOBA &D1"
in.2 = "//STEP1 EXEC PGM=&D1"
in.3 = "//&D2 DD *"
in.0 = 3
"IMFEXEC TAILOR STEMIN(IN) STEMOUT(OUT) SEARCH(TSO)"

After the TAILOR command, variable OUT.0 would contain 3.
variable OUT.1: //JOBA JOB
variable OUT.2://STEP1 EXEC PGM=JOB
variable OUT.3://SYSIN DD *

CLIST EXEC example:

PROC 0
SET IN_1 = &STR(//JOBA &&D1)
SET IN_2 = &STR(//STEP1 EXEC PGM=&&D1)
SET IN_3 = &STR(//&&D2 DD *)
SET IN_0 = 3
IMFEXEC TAILOR STEMIN(IN) STEMOUT(OUT) SEARCH(TSO)

After the TAILOR command, variable OUT_0 would contain 3.
variable OUT_1: //JOBA JOB
variable OUT_2://STEP1 EXEC PGM=JOB
variable OUT_3://SYSIN DD *

Variable Contents

D1 ‘JOB’

D2 ‘SYSIN’
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-163

TAILOR
Example 2

The following TSO variables exist:

The following LOCAL variables exist:

The following input stream is processed:

REXX EXEC example:

//JOBA &D1
//STEP1 EXEC PGM=&D1
//&D2 DD *

CLIST EXEC example:

//JOBA &D1
//STEP1 EXEC PGM=&D1
//&D2 DD *

This stream is processed with the following statement (fragmented):

IMFEXEC TAILOR ... SEARCH(TSO)

The output stream looks as follows:

//JOBA JOB
//STEP1 EXEC PGM=JOB
//SYSIN DD *

This stream is processed with the following statement (fragmented):

IMFEXEC TAILOR ... SEARCH(LOCAL TSO)

Variable Contents

D1 ‘JOB’

D2 ‘SYSIN’

Variable Contents

D2 ‘TEST’
BMC Software, Inc., Confidential and Proprietary Information

12-164 MAINVIEW AutoOPERATOR Advanced Automation Guide

TAILOR
The output stream looks as follows:

//JOBA JOB
//STEP1 EXEC PGM=TEST
//TEST DD *

Example 3

The following TSO variables exist:

The following input stream is processed:

//JOBA &D1 (3211)
//STEP1 EXEC PGM=&D1
//&D2 DD *

This stream is processed with the following statement (fragmented):

IMFEXEC TAILOR ... SEARCH(TSO)

The output stream looks as follows:

///JOBA (3211)
//STEP1 EXEC PGM=
//SYSIN DD *

Example 4

A member CMDBASE exists in BBPARM with the following contents:

COPY INDD(&INDD\) TO OUTDD(&OUTDD\)

The following TSO variables exist:

Variable Contents

D2 ‘SYSIN’

Variable Contents

D1 ‘JOB’

D2 ‘SYSIN’
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-165

TAILOR
The following input stream is processed:

//JOBA &D1
//STEP1 EXEC PGM=&D1
//&D2 DD *
)INCL &CMDBASE

This stream is processed with the following statement (fragment):

IMFEXEC TAILOR ... SEARCH(TSO)

//JOBA JOB
//STEP1 EXEC PGM=JOB
//SYSIN DD *
COPY INDD(SYS1.PARMLIB) TO OUTDD(MY.PARMLIB)

Example 5

The following TSO variables exist:

The following input stream is processed:

//JOBA &D1
//STEP1 EXEC PGM=&D1
//&D2 DD *
)DO 5
CALL PROCESS
)END

INDD ‘SYSIN.PARMLIB’

OUTDD ‘MY.PARMLIB’

INCLUDE ‘CMDBASE’

Variable Contents

D1 ‘JOB’

D2 ‘SYSIN’

Variable Contents
BMC Software, Inc., Confidential and Proprietary Information

12-166 MAINVIEW AutoOPERATOR Advanced Automation Guide

TAILOR
This stream is processed with the following statement (fragmented):

IMFEXEC TAILOR ... SEARCH(TSO)

The output stream looks as follows:

/JOBA JOB
//STEP1 EXEC PGM=JOB
//SYSIN DD *
CALL PROCESS
CALL PROCESS
CALL PROCESS
CALL PROCESS
CALL PROCESS

Example 6

The following TSO variables exist:

The following LOCAL variables exist:

The following input stream is processed:

//JOBA &D1
//STEP1 EXEC PGM=&D1
//&D2 DD *
)DO 5 INDEX
CALL PROCESS &&P\&INDEX
)END

Variable Contents

D1 ‘JOB’

D2 ‘SYSIN’

P1 ‘VOL003’

P2 ‘VOL004’

P3 ‘VOL005’

P4 ‘VOL006’

Variable Contents

P5 ‘STOR001’
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-167

TAILOR
This stream is processed with the following statement (fragment):

IMFEXEC TAILOR ... SEARCH(TSO LOCAL)

The output stream will look as follows:

//JOBA JOB
//STEP1 EXEC PGM=JOB
//SYSIN DD *
CALL PROCESS VOL003
CALL PROCESS VOL004
CALL PROCESS VOL005
CALL PROCESS VOL006
CALL PROCESS STOR001

Explanation of DO loop:

In this example, the data CALL PROCESS &&P\&INDEX is processed five
times. During these iterations, the variable INDEX is set to the current
iteration count. That means the statement during the first pass is substituted
to

CALL PROCESS &P1

Since the contents of a variable beginning with && are assumed to equal the
string minus one ampersand sign, &&P has the value of &P.

On the second pass, &P1 is substituted as VOL003.

Substitution passes stop internally when the EXEC detects a truncation of the
output that exceeds 80 characters in width, or no more variables to substitute.

Note: The default is two passes, but it can be overridden using the
)DEFAULT directive in the input stream.

Example 7

The following variables are used:

Variable Contents

DSN.0= 3

DSN.1 'MY.DATASET’

DSN.2 'YOUR.DATASET’
BMC Software, Inc., Confidential and Proprietary Information

12-168 MAINVIEW AutoOPERATOR Advanced Automation Guide

TAILOR
The following input stream is processed:

//XJOB JOB
/STEP1 EXEC PGM=IEFBR14
)DO &DSN.0 INDEX
//DD&INDEX DD DISP=SHR,DSN=&&DSN\.&INDEX\\,VOL=&VOL
)END

A loop is generated. The statements between)DO and)END are executed as
many times as the contents of the variable &DSN.0. Every time the loop is
executed the variable INDEX is set to the execution count which means the
first time the loop executes, it is set to 1, the next time, it will be set to 2, etc.

The statement

//DD&INDEX DD DISP=SHR,DSN=DSN&&DSN\.&INDEX\\,VOL=&VOL

will execute three times, with the value of the variable INDEX varying from
1 to 3. The)DO statement is translated to

)DO 3 INDEX

Explanation of the looped statement

On the first pass it is translated to:

//DD1 DD DISP=SHR,DSN=&DSN.1\,VOL=SYSDA

Note that the first \ following &INDEX\\,VOL=&VOL has been discarded
according to the rules.

Now the second pass translates it again:

//DD1 DD DISP=SHR,DSN=MY.DATASET,VOL=SYSDA

The same substitution is performed on the second and third iteration. See
“Variable Substitution” on page 12-161 for variable processing rules.

When &&XYZ\\ is specified, rule #1 is followed where the name of the
variable is defined by looking at the string following the first & sign, until a
blank or \ is detected. Therefore, the actual name of this variable would be
&XYZ. This variable can never exist in REXX, nor in CLIST.

DSN.3 ‘ANOTHER.DATASET’

VOL ‘SYSDA’

Variable Contents
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-169

TAILOR
However, following rule number 3, the value of this variable is assumed to be
the name of the variable. Therefore the contents of &XYZ actually is &XYZ.
The string &&XYZ\\ became &XYZ\ on the first pass.

On the second pass, &XYZ\ is the name of the variable for it is again the
string following the & sign up to the next blank or \. The name of the variable
becomes XYZ. This variable name is valid and its contents are substituted.

See “Variable Substitution” on page 12-161 for variable processing rules.
BMC Software, Inc., Confidential and Proprietary Information

12-170 MAINVIEW AutoOPERATOR Advanced Automation Guide

TRANSMIT
TRANSMIT

This command responds in an OSPI session to a VTAM application by
sending a 3270 input data stream. This is equivalent to an operator pressing
an active (non-local) key on a 3270 terminal keyboard.

Refer to Chapter 8, “Interacting with VTAM Applications with OSPI” for
more information about using this command and OSPI.

When using this statement, you must remember to code IMFEXEC with the
TRANSMIT command. If you do not, you might cause the TSO/E
TRANSMIT command to be invoked.

The following table describes the parameters.

After a TRANSMIT command, a receive function is implied. After the
receive, the virtual screen buffer is modified with the application's data.

You can query the buffer by coding the VGET command for any of the
session variables or by using the SCAN command. Some applications require
the explicit use of a RECEIVE command after a TRANSMIT. Refer to
Chapter 8, “Interacting with VTAM Applications with OSPI” for more
information.

Condition codes are listed in the following table.

Command Parameters

TRANSMIT [ENTER|CLEAR|PFx|PAx]
SESSION(Session identifier)

Parameter Function Notes

Keystroke The key used to transmit the buffer One of the following pools:
• ENTER
• CLEAR
• PFx (where x = 1-24)
• PAx (where x= 1-3)

SESSION Session identifier for session to reference This session identifier is returned initially
through the LOGON command.

Value Description

0 Command responded before wait time expired

8 Session not found
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-171

TRANSMIT
Example

This example command transmits the modified virtual screen back to the host
application using the ENTER key. The SESSION keyword designates the
referred session.

REXX EXEC example:

/* REXX */
"IMFEXEC TRANSMIT ENTER SESSION("OSISESS")"

CLIST EXEC example:

IMFEXEC TRANSMIT ENTER SESSION(&OSISESS)
BMC Software, Inc., Confidential and Proprietary Information

12-172 MAINVIEW AutoOPERATOR Advanced Automation Guide

TYPE
TYPE

This command enters data into the virtual screen image maintained by an
OSPI session.

Chapter 8, “Interacting with VTAM Applications with OSPI” for more
information about using this command and OSPI.

The following table describes the parameters.

This command does not transmit any data to the host application. The
TRANSMIT command passes the modified virtual screen buffer back to the
application.

Condition codes are listed in the following table.

Command Parameters

TYPE [TAB|BACKTAB|ERASEEOF|HOME|RESET]
[ROW(Row)]
[COL(Column)]
[TEXT(Text)]
SESSION(Session identifier)

Parameter Function Notes

Keystroke A local 3270 function key to type before
entering the text

One of the following:
• TAB
• BACKTAB
• ERASEEOF
• HOME
• RESET

ROW The screen row at which to enter the data Numeric value in the range: 1 - (minus)
the maximum number of rows emulated by
the current terminal type.

COL The screen column at which to enter the
data

Numeric value in the range 1-80.

TEXT The text to be entered on the screen Maximum length is 255 characters.

SESSION Session identifier for session to reference This session identifier is returned initially
through the LOGON command.

Value Description

0 Command responded before wait time expired

4 Timeout occurred

8 Session not found
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-173

TYPE
Example

This example command tabs to the next input field on the virtual screen
before entering the text. The session addressed by this command is contained
in the variable OSISESS.

REXX EXEC example:

/* REXX */
"IMFEXEC TYPE TAB TEXT(’CATALOG’) SESSION("OSISESS")"

CLIST EXEC example:

IMFEXEC TYPE TAB TEXT(’CATALOG’) SESSION(&OSISESS)
BMC Software, Inc., Confidential and Proprietary Information

12-174 MAINVIEW AutoOPERATOR Advanced Automation Guide

VCKP
VCKP

This command writes updated profile pool variables to the BBIVARS data
set.

Checkpoints for PROFILE variables are taken automatically at EXEC
termination if these variables were updated in the EXEC. With VCKP, you
can write variables that were updated in the profile pool directly to the
BBIVARS data set on disk at any point in time during EXEC execution.

This action is recommended if the EXEC does not terminate for extended
periods of dime. Perform this action when you need to guarantee the integrity
of certain variables.

Warning! Presence of the VCKP command within an EXEC’s loop might
degrade the performance of the BBI-SS PAS.

Condition codes are listed in the following table.

Command Parameters

VCKP This command has no parameters.

Value Description

0 Command was executed successfully

20 Invalid syntax used
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-175

VCKP
Example

This example saves the variables IMSSTART, IMSTIME, and IMSCHKPT in
the profile pool. It forces writing these variables to the BBIVARS data set
since the EXEC does not terminate immediately but branches to the label
LAB01 (not shown).

REXX EXEC example:

/* REXX */
"IMFEXEC VPUT (IMSSTAT IMSTIME IMSCHKPT) PROFILE"
"IMFEXEC VCKP"

CLIST EXEC example:

IMFEXEC VPUT (IMSSTAT IMSTIME IMSCHKPT) PROFILE
IMFEXEC VCKP
BMC Software, Inc., Confidential and Proprietary Information

12-176 MAINVIEW AutoOPERATOR Advanced Automation Guide

VDCL
VDCL

This command equates a variable to a list of TSO variables which are
automatically parsed and combined during VGET and VPUT operations.

The following table describes the parameters.

You cannot directly access a LIST variable but instead, you must reference
the individual subcomponents. This command is used in conjunction with the
IMFEXEC VGET INTO() command and allows for simplified parsing of
character strings. There is no corresponding command to reverse the effect of
a VDCL.

Condition codes are listed in the following table.

Example

Refer to the List name in the VGET command but refer to the actual variable
names when you want to access the data in the list. This command is used in
conjunction with the IMFEXEC VGET INTO() command and allows for
simplified parsing of character strings. There is no corresponding command
to reverse the effect of a VDCL.

Command Parameters

VDCL List name
LIST(v1 ... vn)

Parameter Function Notes

List name The name of a list of LOCAL or GLOBAL
variables

LIST The names of the TSO variables to be
used in the EXEC

The maximum number of each variable
name is 32 characters. The total length of
the list of TSO variables cannot exceed
255. The maximum number of variables in
the list is 99. Using this statement
redundantly in an EXEC will slow the
EXEC’s execution.

 Value Description

0 Command was executed successfully

12 Invalid syntax; no variables were passed
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-177

VDCL
REXX EXEC example:

/* REXX */
"IMFEXEC VDCL LINE LIST(P1 P2 P3 P4 P5)"
VAR=’THIS IS A TEST’
"IMFEXEC VPUT VAR LOCAL"
"IMFEXEC VGET VAR INTO(LINE) LOCAL"
"IMFEXEC MSG ’"P1 P2 P3 P4 P5"’"

CLIST EXEC example:

IMFEXEC VDCL LINE LIST(P1 P2 P3 P4 P5)
SET VAR=’THIS IS A TEST’
IMFEXEC VPUT VAR LOCAL
IMFEXEC VGET VAR INTO(LINE) LOCAL
IMFEXEC MSG ’&P1 &P2 &P3 &P4 &P5’

After execution of these example commands, the contents of the variables are
as follows:

THIS IS A TEST.

Note: A list of 99 variables with a total of 256 characters will generate the
following error message: MORE THAN 99 VARIABLES.
BMC Software, Inc., Confidential and Proprietary Information

12-178 MAINVIEW AutoOPERATOR Advanced Automation Guide

VDEL
VDEL

This command deletes one or more variables from one of the
AutoOPERATOR variable pools.

The following table describes the parameters.

Note: This command does not affect variables that have already been
retrieved from one of the pools.

Condition codes are listed in the following table.

 Command Parameters

VDEL Variable name |pattern|(v1 ... vn)
[LOCAL|SHARED|PROFILE] TARGET(ssid)

Parameter Function Notes

Variable name
|pattern|(v1 ... vn)

The name of one or more
AutoOPERATOR variables

If more than one variable is specified, the variable
names must be enclosed in parentheses.
The maximum length of this parameter is 252
bytes. All variables in a pool can be deleted by
using the identifier ALL instead of naming all
variables individually. A variable cannot begin with
a numeric nor can it contain special characters.
An example of using a pattern is:
IMFEXEC VDEL CICS*
The variable names can be generically expressed
by using an asterisk. However, the VDEL
command statement assumes the presence of an
asterisk means the end of the string.
IMFEXEC VDEL ABC*D
is treated as if you coded:
IMFEXEC VDEL ABC*
In addition, if you try to use an asterisk within a
string of text, you will receive a return code for
invalid syntax usage. For example, if you try to
issue a pattern:
IMFEXEC VDEL CSM*MSG12
you will receive a return code of IMFCC=16 (for
invalid syntax usage).

Pool identifier The pool in which the designated
variables reside

One of the following pools:
• LOCAL
• SHARED
• PROFILE

TARGET Allows you specify the BBI-SS PAS
ID of another BBI-SS PAS. You can
then VDEL variables from one BBI-
SS PAS to another BBI-SS PAS
that communicates with it.

The TARGET keyword can be used with IMFEXEC
commands VDEL, VGET, and VPUT.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-179

VDEL
Example

This example deletes all variables ending in the characters TEST from the
shared variable pool. It uses the VLST command to retrieve all variable
names.

REXX EXEC example:

/* REXX */
"IMFEXEC VLST * SHARED"

DO I = 1 TO IMFNOL
 "IMFEXEC VGET LINE"N "LOCAL"
 "IMFEXEC VGET" LINE||N" INTO(DUMMY1) SHARED"
 LEN = LENGTH(VALUE(’LINE’I))
 IF LEN > 3 THEN
 IF SUBSTR(VALUE(’LINE’I),LEN-3,LEN) = ’TEST’ THEN
 "IMFEXEC VDEL" VALUE(’LINE’I) "SHARED"
END

Value Description

0 Command was executed successfully

8 One of the following conditions is true:
• Variable does not exist
• Node not found in BBPARM member BBINOD00 (when TARGET is used)

12 TARGET not found in BBPARM member BBIJNT00

16 Syntax error; TARGET not found in BBPARM member BBIJNT00

20 One of the following conditions is true:
• Severe error (internal) and pool was not found
• Variable overflow
When using the TARGET keyword to VPUT a variable to another target, there is a limit
of (approximately) 7000 bytes of data that can be sent to another target.
BMC Software, Inc., Confidential and Proprietary Information

12-180 MAINVIEW AutoOPERATOR Advanced Automation Guide

VDEL
CLIST EXEC example:

IMFEXEC VLST * SHARED
SET I=1
DO WHILE &I LE &IMFNOL
 IMFEXEC VGET LINE&I LOCAL
 SET LEN=&LENGTH(&SYSNSUB(2,&LINEI))
 IF &LEN LT 4 THEN GOTO SKIP
 IF STR(&SUBSTR(&LEN-3:&LEN,&SYSNSUB(2,&&LINEI))) +
 NE TEST THEN GOTO SKIP
 IMFEXEC VDEL &SYSNSUB(2,&&LINE&I) SHARED
 SKIP: +
 SET I=&I+1
END
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-181

VDELL
VDELL

This command deletes one or more long variables from one of the
AutoOPERATOR variable pools.

Note: This variable operation only supports a subset of the functions
available for the short variables. It ONLY affects and searches for
long variables. If a short variable (created with VPUT instead of
VPUTL) with the specified name exists, it is ignored.

The following table describes the parameters.

Note: This command does not affect variables that have already been
retrieved from one of the pools.

Condition codes are listed in the following table.

Command Parameters

VDELL [LOCAL|SHARED|PROFILE)]
Variable name|pattern|(v1 ... vn)

Parameter Function Notes

Pool identifier The pool in which the
designated variables reside

One of the following pools:
• LOCAL
• SHARED
• PROFILE
SHARED is the default.

Variable name|
pattern|(v1 ...
vn)

The name of one or more
variables or a pattern.

If more than one variable is specified, the variable names
must be enclosed in parentheses.
The maximum length of this parameter is 252 bytes. All
variables in a pool can be deleted by using the identifier ALL
instead of naming all variables individually. A variable cannot
begin with a numeric nor can it contain special characters.
An example of using a pattern is:
IMFEXEC VDELL CICS*
The variable names can be generically expressed by using
an asterisk. However, the VDEL command statement
assumes the presence of an asterisk means the end of the
string.
IMFEXEC VDELL ABC*D
is treated as if you coded:
IMFEXEC VDELL ABC*
In addition, if you try to use an asterisk within a string of text,
you will receive a return code for invalid syntax usage. For
example, if you try to issue a pattern:
IMFEXEC VDELL CSM*MSG12
you will receive a return code of IMFCC=16 (for invalid
syntax usage).
BMC Software, Inc., Confidential and Proprietary Information

12-182 MAINVIEW AutoOPERATOR Advanced Automation Guide

VDELL
Example

The PROFILE pool is searched for a long variable with the name of X. If
found it is deleted.

REXX EXEC example:

"IMFEXEC VDELL X PROFILE"

CLIST EXEC example:

IMFEXEC VDELL X PROFILE

Value Description

0 The variable existed in the target pool and has been deleted.

8 No long variable with this name has been found in the target pool.

12 Attempt to delete a read-only variable (for example, Q-type variable was specified
which cannot be deleted with VDELL).

16 Syntax error.

20 Variable pool not found (BBIVARS not allocated)
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-183

VDEQ
VDEQ

This command issues an MVS Dequeue for a major name of BBIUSER.

The following table describes the parameters.

The VDEQ command returns without errors if the enqueue was already freed
by VDEQ issued in the same EXEC. Use this command in conjunction with
the VENQ command.

Condition codes and the corresponding return codes (listed in the variable
IMFRC) are listed in the following table. The IMFRC value represents the
return code

Example

This example releases the enqueue on the symbolic resource STARTUP.
Other EXECs waiting for this resource resume processing.

REXX EXEC example:

/* REXX */
"IMFEXEC VDEQ ’STARTUP’"

CLIST EXEC example:

IMFEXEC VDEQ ’STARTUP’

Command Parameters

VDEQ ’Symbolic name’

Parameter Function Notes

’Symbolic name’ The minor name of the Dequeue 1-255 alphanumeric characters.

IMFCC
Value Description

IMFRC
Value Description

0 Enqueue released; no warning applies 0 Enqueue release

4 Enqueue not held or is already released;
warning applies

8 Enqueue not held or already released

16 Syntax error N/A N/A
BMC Software, Inc., Confidential and Proprietary Information

12-184 MAINVIEW AutoOPERATOR Advanced Automation Guide

VENQ
VENQ

This command issues an MVS Enqueue for a major name of BBIUSER. It
establishes a shared or an exclusive ENQUEUE for the given parameter.

Use this command whenever access to a particular resource needs to be
serialized.

The following table describes the parameters.

The VENQ command returns without errors if the enqueue was already
obtained for a previous VENQ issued in the same EXEC.

Condition codes and the corresponding return codes (listed in the variable
IMFRC) are listed in the following table. The IMFRC value represents the
return code returned from the actual MVS enqueue macro.

 Command Parameters

VENQ ’Symbolic name’
Disposition
TEST

 Parameter Function Notes

’Symbolic name’ The minor name of the Enqueue 1-255 alphanumeric characters.

Disposition Type of Enqueue to issue Either SHR or EXC.
SHR means the resource can be shared
between tasks in the same address
space. EXC means a task has an
exclusive enqueue and no other tasks can
enqueue at that resource.

TEST Specifies that no ENQ is obtained but the
availability of an ENQ will be tested

A different set of condition codes is
returned if this parameter is used. Refer to
the condition code tables below.

IMFCC
Value Description

IMFRC
Value Description

0 Enqueue received; no warning applies 0 Enqueue obtained or is obtainable

4 Enqueue already held; warning applies 8 EXEC already has control of the enqueue

8 Enqueue not obtained; warning applies 14 Previous request for enqueue has been
made for the same task; the EXEC does
not have control of the enqueue

8 Enqueue not obtained; warning applies 18 Limit for concurrent requests reached

16 Syntax error N/A N/A
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-185

VENQ
If you use the parameter TEST with the IMFEXEC ENQUEUE statement, a
different set of condition codes and the corresponding return codes (listed in
the variable

Example 1

This example command establishes a shared ENQUEUE for the name
STARTUP.

REXX EXEC example:

/* REXX */
"IMFEXEC VENQ ’STARTUP’ SHR"

CLIST EXEC example:

IMFEXEC VENQ ’STARTUP’ SHR

Example 2

This example command tests whether the current EXEC can obtain shared
access to the resource PRODCICS.

REXX EXEC example:

“IMFEXEC VENQ 'PRODCICS' SHR TEST”

CLIST EXEC example:

IMFEXEC VENQ 'PRODCICS' SHR TEST

IMFCC
Value Description

IMFRC
Value Description

0 Enqueue obtainable; no warning
applies

0 Enqueue obtained or is obtainable

4 Enqueue already held; warning applies 8 EXEC already has control of the enqueue

8 Enqueue not obtainable; error warning
applies

4 Resource not available

8 Enqueue not obtainable; error warning
applies

14 Previous request for enqueue has been
made for the same task; the EXEC does
not have control of the enqueue

16 Syntax error N/A N/A
BMC Software, Inc., Confidential and Proprietary Information

12-186 MAINVIEW AutoOPERATOR Advanced Automation Guide

VGET
VGET

This command copies one or more variables from one of the
AutoOPERATOR pools into the EXECs function pool.

The following table describes the parameters.

 Command Parameters

VGET Variable name|(v1 ... vn)
[INTO(Variable)]
[LOCAL|SHARED|PROFILE]
[DECRYPT(xyz)]
DELIM(’,’)
TARGET(ssid)

Parameter Function Notes

Variable name|(v1
... vn)

The name of one or more variables to
copy

If more than one variable is specified, the
variable names must be enclosed in
parentheses.
Each variable name can be up to 32
characters. The maximum length of the
combined variable values is 252 bytes.

INTO An optional keyword that you can use in
conjunction with the VDCL command to
map a string of characters into a list of
individual variables

The variable to receive the values should
have been declared with the IMFEXEC
VDCL statement.

Pool identifier The pool in which the designated variables
reside

One of the following pools:
• LOCAL
• SHARED
• PROFILE

DECRYPT(xyz) Specifies a character string that can be
used for decrypting variable contents

 This parameter must be used in
conjunction with the ENCRYPT parameter
on an IMFEXEC VPUT command at the
same time. If this is not done, the contents
of the data will not match.
The character string can be 2-255
characters long.
Enclose the character string in single
quote marks if the string contains blanks.
Only individual variables can be
decrypted. List variables cannot be
decrypted.
Refer to “VPUT” on page 12-197 for
information about the ENCRYPT
parameter.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-187

VGET
Condition codes are listed in the following table.

Example 1

This example displays the contents of the EXECs SHARED variable pool. It
uses the VLST command to retrieve the names of all variables in that pool. It
then performs VGETs them one after the other and displays their contents.

/* REXX */
"IMFEXEC VLST * SHARED"

DO I = 1 TO IMFNOL
 "IMFEXEC VGET LINE"I "LOCAL"
 "IMFEXEC VGET" VALUE(’LINE’I) "SHARED"
 "IMFEXEC MSG ’.."VALUE(VALUE(’LINE’I))"’"
END

DELIM(’,’) Allows you to specify characters (instead
of blanks) to delimit words or characters
into separate variables

 Blank is the default.

TARGET Allows you specify the BBI-SS PAS ID of
another BBI-SS PAS. You can then VGET
variables from one BBI-SS PAS to another
BBI-SS PAS that communicates with it.

The TARGET keyword can be used with
IMFEXEC commands VDEL, VGET, and
VPUT.

Value Description

0 Command was executed successfully

8 One of the following is true:
• Variable does not exist
• Node not found in BBPARM member BBINOD00 (when TARGET is used)

12 TARGET not found in BBPARM member BBIJNT00

16 Node not available

20 One of the following conditions is true:
• Severe error (internal) and pool was not found
• Variable overflow

When using the TARGET keyword to VPUT a variable to another target, there is a
limit of (approximately) 7000 bytes of data that can be sent to another target. This
includes both the variable name and variable value.

Parameter Function Notes
BMC Software, Inc., Confidential and Proprietary Information

12-188 MAINVIEW AutoOPERATOR Advanced Automation Guide

VGET
CLIST EXEC example:

IMFEXEC VLST * SHARED
SET I=1
DO WHILE &I LE &IMFNOL
 IMFEXEC VGET LINE&I LOCAL
 IMFEXEC VGET &SYSNSUB(2,&&LINEI) SHARED
 IMFEXEC MSG ..&SYSNSUB(2,&&LINEI)
 SET I=&I+1
END

Example 2

The VDCL command specifies that CICSL20 is a list of 12 variables, V1 to
V12. The VGET command maps the data returned for LINE20 into the 12
variables. The local variables, V1 through V12, can now be processed by
other commands within the EXEC.

/* REXX */
"IMFEXEC VDCL CICSL20 LIST(V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12)"
"IMFEXEC VGET LINE20 INTO(CICSL20) LOCAL"

CLIST EXEC example:

IMFEXEC VDCL CICSL20 LIST(V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12)
IMFEXEC VGET LINE20 INTO(CICSL20) LOCAL
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-189

VGET
Example 3

This example shows how to use the IMFEXEC VPUT ENCRYPT and
IMFEXEC VGET DECRYPT parameters. Both parameters specify
(’DATASTREAM’)which ensures that when the variable ABC is decrypted,
the contents of the variable are accurate.

/* REXX */
ABC=SUBSTR(THIS IS A DATA ENCRYPTION EXAMPLE)
"IMFEXEC VPUT ABC SHARED ENCRYPT(’DATASTREAM’)"
"IMFEXEC VGET ABC SHARED DECRYPT(’DATASTREAM’)"

CLIST EXEC example

SET ABC=&STR(THIS IS A DATA ENCRYPTION EXAMPLE)
IMFEXEC VPUT ABC SHARED ENCRYPT(’DATASTREAM’)
IMFEXEC VGET ABC SHARED DECRYPT(’DATASTREAM’)
BMC Software, Inc., Confidential and Proprietary Information

12-190 MAINVIEW AutoOPERATOR Advanced Automation Guide

VGETL
VGETL

This command copies one or more long variables from one of the
AutoOPERATOR pools into the TSO pool.

Note: This variable operation only supports a subset of the functions
available for the short variables. It ONLY affects and searches for
long variables. If a short variable (created with VPUT instead of
VPUTL) with the specified name exists it is ignored.

The following table describes the parameters.

Condition codes are listed in the following table.

Command Parameters

VGETL [LOCAL|SHARED|PROFILE)]
Variable name|(v1 ... vn)

Parameter Function Notes

Pool identifier The pool in which the designated
variables reside

One of the following pools:
• LOCAL
• SHARED
• PROFILE
SHARED is the default.

Variable name|(v1 ...
vn)

The name of one or more variables Required parameter.
If more than one variable is specified,
the variable names must be enclosed in
parentheses.
Each variable name can be up to 30
characters. The maximum length of the
combined variable values is 252 bytes

Value Description

0 The variable existed in the target pool and has been retrieved.

8 No long variable with this name has been found in the target pool.

16 Syntax error

20 Variable pool not found (BBIVARS not allocated)
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-191

VGETL
Examples

The PROFILE pool is searched for a long variable with the name of X. If
found it is placed into the TSO pool. It is then assigned to the variable Y.

"IMFEXEC VGETL X PROFILE"
y=x

CLIST EXEC example:

IMFEXEC VGETL X PROFILE
SET Y=X
BMC Software, Inc., Confidential and Proprietary Information

12-192 MAINVIEW AutoOPERATOR Advanced Automation Guide

VLST
VLST

This command lists variable names defined in the AutoOPERATOR pools. It
returns those names in LOCAL variables LINE1 through LINEn and sets
IMFNOL to the count of LINEs.

The following table describes the parameters.

Condition codes are listed in the following table.

Command Parameters

VLST Variable pattern
[SHARED | PROFILE | REXX]

 Parameter Function Notes

Variable pattern The name or name pattern for specifying
variable names to retrieve

The variable names can be generically
expressed by using an asterisk.

Pool identifier The pool in which the designated variables
reside

One of the following pools:
• SHARED
• PROFILE
• REXX

Value Description

0 Command was executed successfully

8 No variable was found

12 Variable pool is not available
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-193

VLST
Example

The following EXEC uses the IMFEXEC VLST command to retrieve all the
variables that begin with RETRY and then reports the number of retries. The
variable RETRY.termname will contain the number of retries for a terminal.

/* REXX */
/***/
/* THIS EXEC WILL PRINT RETRY COUNTS FOR ALL TERMINALS */
/***/

 "IMFEXEC VLST RETRY* SHARED"
 IF IMFCC > 0 THEN EXIT

 "IMFEXEC VDCL DUMMY1 LIST(VARNAME)"
 "IMFEXEC VDCL DUMMY2 LIST(DATE COUNT)"

 DO N = 1 TO IMFNOL
 "IMFEXEC VGET LINE"N "INTO(DUMMY1) SHARED"
 "IMFEXEC VGET" VALUE(VARNAME) "INTO(DUMMY2) SHARED"
 END = LENGTH(VARNAME)
 NOD = SUBSTR(VARNAME,7,END-7)
 "IMFEXEC MSG ’*TERMINAL:" NOD "RETRIES: "COUNT"’"
 END
 "IMFEXEC VDEL RETRY* SHARED"

CLIST EXEC example:

PROC 1 EXECNAME
/***/
/* THIS EXEC WILL PRINT RETRY COUNTS FOR ALL TERMINALS */
/***/
 COUNT: -
 IMFEXEC VLST RETRY* SHARED
 SET RC = &IMFCC
 IF &RC > 0 THEN EXIT
 IMFEXEC VDCL DUMMY1 LIST(VARNAME)
 IMFEXEC VDCL DUMMY2 LIST(DATE COUNT)
 SET N = 1
 DO WHILE (&N LE &IMFNOL)
 IMFEXEC VGET LINE&N INTO(DUMMY1) LOCAL
 IMFEXEC VGET &VARNAME INTO(DUMMY2) SHARED
 SET END = &LENGTH(&VARNAME)
 SET NOD = &SUBSTR(7:&END,&VARNAME)
 IMFEXEC MSG ’*TERMINAL: &NOD RETRIES: &COUNT’
 SET N = &N + 1
 END
 IMFEXEC VDEL RETRY* SHARED
BMC Software, Inc., Confidential and Proprietary Information

12-194 MAINVIEW AutoOPERATOR Advanced Automation Guide

VLSTL
VLSTL

This command retrieves a long variable from the specified pool and places it
into the TSO pool.

Note: This variable operation only supports a subset of the functions
available for the short variables. It ONLY affects and searches for
long variables. If a short variable (created with VPUT instead of
VPUTL) with the specified name exists it is ignored.

The following table describes the parameters.

Condition codes are listed in the following table.

Command Parameters

VLSTL [SHARED|PROFILE]
Variable pattern

Parameter Function Notes

Pool identifier The pool in which the designated
variables reside

One of the following pools:
• SHARED
• PROFILE
SHARED is the default.

Variable pattern The name or name pattern for specifying
variable names to retrieve

Required parameter.
Only one variable can specified and the
name must be enclosed in parentheses.
Each variable name can be up to 30
characters.
The variable name can be a pattern:
(A+B*)
where the following wild cards are
supported:
+ (plus sign)
Matches any one character.
* (asterisk)
Matches zero to any number of
characters.

Value Description

0 At least one variable has been found.

8 No long variable with this name has been found in the target pool.

16 Syntax error

20 Variable pool not found (BBIVARS not allocated)
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-195

VLSTL
Example

This EXEC lists all long variables in the SHARED pool and writes their
names to the terminal.

/* REXX */
"IMFEXEC VLSTL * SHARED"
say IMFNOL
do i=1 to IMFNOL
 say value(’LINE’I)
end

CLIST EXEC example:

PROC 0
IMFEXEC VLSTL * SHARED
WRITE &LCNT
SET I = 1
DO WHILE &I LE &LCNT
 SET NAME = &&&STR(LINE)&I
 WRITE &NAME
 SET I=&I+1
END
BMC Software, Inc., Confidential and Proprietary Information

12-196 MAINVIEW AutoOPERATOR Advanced Automation Guide

VPUT
VPUT

This command copies one or more variables from the EXECs function pool
into one of the AutoOPERATOR pools.

The following table describes the parameters.

Command Parameters

VPUT Variable name|(v1 ... vn)
[FROM(Variable name)]
[LOCAL|SHARED|PROFILE]
[USING(v1 ... vn)]
[ENCRYPT(xyz)]
TARGET(ssid)

Parameter Function Notes

Variable name|(v1
... vn)

The names of one or more variables to
copy

If more than one variable is specified, the
variable names must be enclosed in
parentheses.
Each variable name can be up to 32
characters. The maximum length of the
combined variable values is 252 bytes.

FROM An optional keyword that you can use in
conjunction with the VDCL command to
map a string of characters into a list of
individual variables

The list is created by IMFEXEC VDCL.

Pool identifier The pool to which the designated
variables should be placed

One of the following pools:
• LOCAL
• SHARED
• PROFILE

USING An optional keyword that, when used with
AutoOPERATOR variables, allows you to
set the AutoOPERATOR variables from
the LOCAL variable pool

For example:
IMFEXEC VPUT (A B C)USING (X
Y Z)
allows the AutoOPERATOR variables A, B,
and C be set to the TSO variable
contained in X, Y, and Z.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-197

VPUT
Condition codes are listed in the following table.

ENCRYPT(xyz) Specifies a character string that can be
used for encrypting variable contents

 This parameter must be used in
conjunction with the DECRYPT parameter
on an IMFEXEC VGET command at the
same time. If this is not done, the contents
of the data will not match.
The character string can be 2-255
characters long.
Enclose the character string in single
quote marks if the string contains blanks.
Only individual variables can be
encrypted. List variables cannot be
encrypted.
Refer to “VGET” on page 12-187 for
information about the DECRYPT
parameter.

TARGET Allows you specify the BBI-SS PAS ID of
another BBI-SS PAS. You can then VPUT
variables from one BBI-SS PAS to another
BBI-SS PAS that communicates with it.

The TARGET keyword can be used with
IMFEXEC commands VDEL, VGET, and
VPUT.

Value Description

0 Command was executed successfully

4 Variable did not previously exist in the designated pool

8 One of the following is true:
• Invalid syntax used
• When using VPUT to put the variable to the PROFILE pool, the PROFILE pool data

set BBIVARS is full
• Node not found in BBPARM member BBINOD00 (when TARGET is used)

12 One of the following is true:
• Q-type variable was specified and cannot be VPUT
• TARGET not defined in BBPARM member BBIJNT00

16 One of the following is true:
• Internal error
• Node not available and TARGET is used

20 One of the following conditions is true:
• No variables in list
• Variable name is invalid
• Variable overflow
When using the TARGET keyword to VPUT a variable to another target, there is a limit
of (approximately) 7000 bytes of data that can be sent to another target. This includes
both the variable name and variable value.

Parameter Function Notes
BMC Software, Inc., Confidential and Proprietary Information

12-198 MAINVIEW AutoOPERATOR Advanced Automation Guide

VPUT
Example1

This example command saves the current value of ABENDS, ABENDCOUNT,
and ABENDREASON in the shared pool.

REXX EXEC example:

/* REXX */
"IMFEXEC VPUT (ABENDS ABENDCOUNT ABENDREASON)"

CLIST EXEC example:

IMFEXEC VPUT (ABENDS ABENDCOUNT ABENDREASON)

Example 2

This example command saves the current value of ABENDS in the local pool.

/* REXX */
"IMFEXEC VPUT ABENDS LOCAL"

CLIST EXEC example:

IMFEXEC VPUT ABENDS LOCAL
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-199

VPUT
Example 3

This show how to use the IMFEXEC VPUT ENCRYPT and IMFEXEC
VGET DECRYPT parameters. Both parameters specify (’DATASTREAM’)
which ensures that when the variable ABC is decrypted, the contents of the
variable will be accurate.

REXX EXEC example:

/* REXX */
ABC=SUBSTR(THIS IS A DATA ENCRYPTION EXAMPLE)
"IMFEXEC VPUT ABC SHARED ENCRYPT(’DATASTREAM’)"
"IMFEXEC VGET ABC SHARED DECRYPT(’DATASTREAM’)"

CLIST EXEC example:

SET ABC=&STR(THIS IS A DATA ENCRYPTION EXAMPLE)
IMFEXEC VPUT ABC SHARED ENCRYPT(’DATASTREAM’)
IMFEXEC VGET ABC SHARED DECRYPT(’DATASTREAM’)
BMC Software, Inc., Confidential and Proprietary Information

12-200 MAINVIEW AutoOPERATOR Advanced Automation Guide

VPUTL
VPUTL

This command creates a or sets a long variable from a variable in the TSO
pool.

Note: This variable operation only supports a subset of the functions
available for the short variables. For example, no target system
functionality is provided. It ONLY affects and searches for long
variables. If a short variable (created with VPUT instead of VPUTL)
with the specified name exists it is ignored.

The following table describes the parameters.

Condition codes are listed in the following table.

Command Parameters

VPUTL [LOCAL|SHARED|PROFILE)]
Variable name|(v1 ... vn)

Parameter Function Notes

Pool identifier The pool in which the designated
variables reside

One of the following pools:
• LOCAL
• SHARED
• PROFILE
SHARED is the default.

Variable name|(v1 ... vn) The name of one or more variables Required parameter.
Each variable name can be up to 30
characters. The maximum length of the
combined variable values is 252 bytes.
Variables beginning with the character
Q are reserved for system variables
and may not be modified.

Value Description

0 The variable existed in the target pool and has been overwritten.

4 The variable did not exist in the pool and has been created.

8 Error during operation. Possible Out-of-Space condition for the PROFILE pool.

12 Attempt to set a read-only variable (for example, Q-type variable was specified which
cannot be VPUT).

16 Syntax error

20 Variable pool not found. BBIVARS not allocated.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-201

VPUTL
Example

a=’This is a test’

"IMFEXEC VPUTL A SHARED"

CLIST EXEC example:

SET A=&STR(This is a test)
IMFEXEC VPUTL A SHARED
BMC Software, Inc., Confidential and Proprietary Information

12-202 MAINVIEW AutoOPERATOR Advanced Automation Guide

WAIT
WAIT

This command suspends EXEC execution for a specified interval or until a
value (or name) is posted by another EXEC using the IMFEXEC POST
command statement.

The following table describes the parameters.

Condition codes are listed in the following table.

 Command Parameters

WAIT n

NAME (name)

Parameter Function Notes

Interval Number of seconds to suspend execution Numeric value in the range 1-9999.

NAME Use this parameter with the NAME
parameter in the IMFEXEC POST
command statement

Can be 1-32 alphanumeric characters
long.
This parameter allows you to halt
execution of the EXEC until either the wait
time expires or until the NAME parameter
in an IMFEXEC POST command is
posted. Refer to “POST” on page 12-131
for additional information.

Value Description

0 Command was executed successfully. (If WAIT on NAME and INTERVAL did not
expire.)

8 Attempted WAIT on NAME timed out.

16 Syntax Error
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-203

WAIT
Example

This example pauses the EXEC for 15 seconds or until the name TOKEN is
posted by the IMFEXEC POST command statement in another EXEC. The
EXEC processing thread remains in use.

/* REXX */
"IMFEXEC WAIT 15 NAME(TOKEN)"

CLIST EXEC example:

IMFEXEC WAIT 15 NAME(TOKEN)
BMC Software, Inc., Confidential and Proprietary Information

12-204 MAINVIEW AutoOPERATOR Advanced Automation Guide

WAITLIST
WAITLIST

This command returns the IDs of EXECs in WAIT mode to the LOCAL pool
in variables EXEC1 through EXECxxx. In addition:

• The variables LINE1 through LINExxx contain the names of the
resources and the variable IMFNOL contains the number of lines
returned

• The variables NAME1 through NAMExxx contain the names of EXECs

• The variables DATE1 through DATExxx contain the date when an EXEC
started

• The variables TIME1 through TIMExxx contain the time they started

The following table describes the parameters.

Condition codes are listed in the following table.

Command Parameters

WAITLIST pattern

Parameter Function Notes

pattern Is the resource name that is being waited
on
This parameter is not optional. You can
use wildcard characters (such as * or +)
where an asterisk represents one or more
characters and a plus sign represents a
single character.

1-32 alphanumeric characters.
LINE1 through LINExxx and EXEC1
through EXECxxx are LOCAL pool
variables and IMFNOL is a TSO variable.
IMFNOL is valid only if the return code is
0.
The variables NAME1 through NAMExxx
contain the names of EXECs.
The variables DATE1 through DATExxx
contain the date when an EXEC started.
The variables TIME1 through TIMExxx
contain the time the EXEC(s) started.

Value Description

0 The names of one or more waiting EXECs and associated resources were returned

4 No waiting EXECs were returned

8 The parameter was not specified

12 Syntax error
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-205

WAITLIST
Example

This example issues the WAITLIST command to display the names of the
EXECs that are awaiting an IMFEXEC POST. The names of the EXECs,
dates and times are displayed in the BBI-SS PAS Journal.

/* REXX */
"IMFEXEC SELECT EXEC(WAIT MOO)WAIT(NO)"
"IMFEXEC SELECT EXEC(WAIT GAV)WAIT(NO)"
"IMFEXEC SELECT EXEC(WAIT MEW)WAIT(NO)"
"IMFEXEC SELECT EXEC(WAIT KWA)WAIT(NO)"
"IMFEXEC WAIT 3"
"IMFEXEC WAITLIST *"
"IMFEXEC MSG ’WTEST.’"
"IMFEXEC MSG ’WTEST.DATE:" date() " TIME:" time()"’"
"IMFEXEC MSG ’WTEST.IMFCC = "IMFCC "’"
"IMFEXEC MSG ’WTEST.IMFRC = "IMFRC "’"
"IMFEXEC MSG ’WTEST.IMFNOL =" imfnol "’"
"IMFEXEC MSG ’WTEST.RESOURCE",
 " EXEC ID NAME DATE TIME STARTED’"
do n = 1 to imfnol
 "IMFEXEC VGET LINE"n "LOCAL"
 "IMFEXEC VGET EXEC"n "LOCAL"
 "IMFEXEC VGET NAME"n "LOCAL"
 "IMFEXEC VGET DATE"n "LOCAL"
 "IMFEXEC VGET TIME"n "LOCAL"
 r1 = value("LINE"n);r = left(r1,10)
 r1 = value("EXEC"n);r = r left(r1,9)
 r1 = value("NAME"n);r = r left(r1,9)
 r1 = value("DATE"n);r = r left(r1,9)
 r1 = value("TIME"n);r = r left(r1,9)
 "IMFEXEC MSG ’WTEST."r"’"
end
"IMFEXEC POST ’MOO’"
"IMFEXEC POST ’GAV’"
"IMFEXEC POST ’MEW’"
"IMFEXEC POST ’KWA’"
"IMFEXEC MSG ’WTEST.’"
return
BMC Software, Inc., Confidential and Proprietary Information

12-206 MAINVIEW AutoOPERATOR Advanced Automation Guide

WAITLIST
CLIST EXEC example:

IMFEXEC SELECT EXEC(WAITC MOO)WAIT(NO)
IMFEXEC SELECT EXEC(WAITC GAV)WAIT(NO)
IMFEXEC SELECT EXEC(WAITC MEW)WAIT(NO)
IMFEXEC SELECT EXEC(WAITC KWA)WAIT(NO)
IMFEXEC WAIT 3
IMFEXEC WAITLIST *
IMFEXEC MSG ’WTEST.’
IMFEXEC MSG ’WTEST.IMFNOL = &imfnol ’
SET R = WTEST.RESOURCE EXEC ID NAME DATE TIME STARTED
IMFEXEC MSG ’&R’
SET A = &STR()
DO &N = 1 TO &IMFNOL
 IMFEXEC VGET LINE&N LOCAL
 IMFEXEC VGET EXEC&N LOCAL
 IMFEXEC VGET NAME&N LOCAL
 IMFEXEC VGET DATE&N LOCAL
 IMFEXEC VGET TIME&N LOCAL
 SET R = WTEST. &&LINE&N &A &&EXEC&N &A &&NAME&N +
 &A &&DATE&N &A &&TIME&N
 IMFEXEC MSG ’&R’
END
IMFEXEC POST ’MOO’
IMFEXEC POST ’GAV’
IMFEXEC POST ’MEW’
IMFEXEC POST ’KWA’
IMFEXEC MSG ’WTEST.’
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-207

WTO
WTO

This command sends a message to one or more system consoles.

The following table describes the parameters.

Command Parameters

WTO ’Msgtext’
[JOBID(n)]
[ROUTCDE(n1 ... nn)]
[DESC(n1 ... nn)]
[CONSOLE|CN(n)]
[SSID(YES|NO)]
[NAME(x)]

 Parameter Function Notes

Msgtext The text of the message to send Maximum length is 126 characters with
SSID defaulting to NO; if SSID is YES,
maximum length is reduced to 119.

JOBID Job identifier to place in SYSLOG as
message issuer

1-8 characters alphanumeric, first
character alpha.

ROUTCDE Routing codes to associate with the
message

Refer to the IBM publication, Routing and
Descriptor Codes, for more information.

DESC Descriptor codes to associate with the
message

Refer to the IBM publication, Routing and
Descriptor Codes, for more information.

CONSOLE
CN

Specific Console ID of console to receive
the message

Numeric identifier.
You can specify NAME() or CONSOLE(),
but you cannot specify both. If you omit
the CONSOLE|CN and NAME keywords,
the system uses the routing code
specified on the ROUTCODE keyword on
the DEFAULT statement in the
CONSOLxx member of SYS1.PARMLIB.

SSID Appends the subsystem ID to the end of
the message

Either YES or NO.

NAME A valid console name to where the
message is sent

You can specify NAME() or CONSOLE(),
but you cannot specify both. If you omit
the CONSOLE|CN and NAME keywords,
the system uses the routing code
specified on the ROUTCODE keyword on
the DEFAULT statement in the
CONSOLxx member of SYS1.PARMLIB.
BMC Software, Inc., Confidential and Proprietary Information

12-208 MAINVIEW AutoOPERATOR Advanced Automation Guide

WTO
Condition codes are listed in the following table.

Examples

This section contains examples using the IMFEXEC WTO command
statement. A brief discussion follows each example.

Example 1

/* REXX */
"IMFEXEC WTO ’- "DATE() TIME() "NCP IS COMING DOWN IN 5 MINUTES’"

This example command sends a message to the system console with the
current date and time passed through the symbolic TSO built-in functions,
DATE() and TIME().

CLIST EXEC example:

IMFEXEC WTO ’- &SYSDATE &SYSTIME NCP IS COMING DOWN IN 5 MINUTES’

Example 2

/* REXX */
"IMFEXEC WTO ’SHIFT CHANGE AT 6PM’ ROUTCDE(1 5 14) DESC(1)"

This example sends the message to specific destinations.

CLIST EXEC example:

IMFEXEC WTO ’SHIFT CHANGE AT 6PM’ ROUTCDE(1 5 14) DESC(1)

Value Description

0 Command was executed successfully. The variable IMFWTDOM contains the DOM ID
for this WTO. You may need to use this value in a later invocation of the IMFEXEC DOM
command to delete the message again.

4 Set when the WTOR is issued with Msgtext truncated because it exceeded the maximum length.

8 Set when invalid syntax is detected. These errors are flagged by TSO/E IKJxxxxx messages or
by AutoOPERATOR short error messages or both.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-209

WTOR
WTOR

This command sends a message to one or more system consoles and returns
an operator reply.

The following table describes the parameters.

Command Parameters

WTOR ’Msgtext’
[JOBID(n)]
[ROUTCDE(n1 ... nn)]
[DESC(n1 ... nn)]
[CONSOLE|CN(n)]
[NAME(x)
REPLY(Variable name)
[WAIT(n)]
[SSID(YES|NO)]

Parameter Function Notes

Msgtext The text of the message to send Maximum length is 122 characters with
SSID defaulting to NO; if SSID is YES,
maximum length is reduced to 121.

JOBID Job identifier to place in SYSLOG as
message issuer If the JOBID parameter is
not specified, the IMFEXEC WTOR
command defaults to the JES job identifier
for the AutoOPERATOR subsystem.

1-8 characters alphanumeric, 1st
character alpha.

ROUTCDE Routing codes to associate with the
message.
Refer to the IBM publication, Routing and
Descriptor Codes, for more information.

Refer to the IBM publication OS/390 MVS
Initialization and Tuning Reference for
information about CONSOLxx.

DESC Descriptor codes to associate with the
message

Refer to the IBM publication, Routing and
Descriptor Codes, for more information.
However, only the descriptor codes of 7
and 13 or both may be specified for a
WTOR.

CONSOLE
CN

Specific Console ID of console to receive
the message

Numeric identifier.
You can specify NAME() or CONSOLE(),
but you can not specify both. If you omit
the CONSOLE|CN and NAME keywords,
the system uses the routing code specified
on the ROUTCODE keyword on the
DEFAULT statement in the CONSOLxx
member of SYS1.PARMLIB.
Refer to the IBM publication OS/390 MVS
Initialization and Tuning Reference for
information about CONSOLxx.
BMC Software, Inc., Confidential and Proprietary Information

12-210 MAINVIEW AutoOPERATOR Advanced Automation Guide

WTOR
Routing codes and descriptor codes are documented in the IBM publication,
Routing and Descriptor Codes. However, only the descriptor codes of 7 and
13 or both may be specified for a WTOR.

Condition codes are listed in the following table.

NAME Specific name of console to receive the
message

This parameter is optional.
You can specify NAME() or CONSOLE(),
but you cannot specify both. If you omit
the CONSOLE|CN and NAME keywords,
the system uses the routing code specified
on the ROUTCODE keyword on the
DEFAULT statement in the CONSOLxx
member of SYS1.PARMLIB.

REPLY The variable name that receives the
operators’ reply

1-32 alphanumeric characters.

WAIT The number of seconds to wait for the
operators’ reply

If not specified, the EXEC will wait
indefinitely.

SSID Appends subsystem identifier to the end of
the message

Either YES or NO.

 Value Description

0 Command was executed successfully

4 Set when the WTOR is issued with Msgtext truncated because it exceeded the
maximum length or when an invalid descriptor code is received.

8 Set when invalid syntax is detected. These errors are flagged by TSO/E IKJxxxxx
messages or by AutoOPERATOR short error messages or both, or when the WAIT()
interval expires because no reply was received.

Parameter Function Notes
BMC Software, Inc., Confidential and Proprietary Information

Chapter 12 Using the IMFEXEC Statements 12-211

WTOR
Example

The below example issues a WTOR. If the operator does not respond within
60 seconds or responds with an S, the CLIST branches to label STARTNET.
Otherwise, execution continues sequentially.

Some common options are dependent.

/* REXX */
"IMFEXEC WTOR ’NETWORK COMING UP IN 1 MINUTE, REPLY ""S"" TO STOP’",
"WAIT(60),REPLY(REP)"
IF IMFCC = 8 THEN SIGNAL STARTNET
IF REP ^= ’S’ THEN SIGNAL STARTNET

CLIST EXEC example:

IMFEXEC WTOR ’NETWORK COMING UP IN 1 MINUTE, REPLY "S" TO STOP’ +
WAIT(60),REPLY(REP)
IF &IMFCC = 8 THEN GOTO STARTNET
IF &REP NE S THEN GOTO STARTNET
BMC Software, Inc., Confidential and Proprietary Information

12-212 MAINVIEW AutoOPERATOR Advanced Automation Guide

22
Chapter 13 Testing and Debugging
EXECs Interactively

This chapter describes testing EXECs with the AutoOPERATOR EXEC
Testing and Debugging Facility.I

This section briefly introduces AutoOPERATOR EXECs and describes why
and when you might use them.

Why Use AutoOPERATOR EXECs

The initial phase of implementing automation at most sites includes tasks
such as message suppression or message rewording. You can simply
automate these tasks by creating Rules with the AutoOPERATOR Rules
Processor applications. Refer to the chapters about Rules in the MAINVIEW
AutoOPERATOR Basic Automation Guide for more information.

As automation becomes more complex, you may find that you need more
tools that are provided by a programming language. AutoOPERATOR
EXECs provide an extensive programming language that comes in two
formats: IBM REXX and IBM TSO CLIST. Although AutoOPERATOR has
expanded the scope of automation through Rules, you may find that some
automation tasks require the use of AutoOPERATOR EXECs.

With AutoOPERATOR EXECs and other facilities such as the Rules
Processor applications and the ALERT Management Facility, almost every
automation related problem can be solved. Information about the Rule
Processor applications and the ALERT Management Facility can be found in
the MAINVIEW AutoOPERATOR Basic Automation Guide.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 13 Testing and Debugging EXECs Interactively 13-1

Overview
What AutoOPERATOR EXECs Are

AutoOPERATOR REXX and CLIST EXEC formats contain a customized set
of commands called IMFEXEC commands that address a variety of problems
pertaining to data center automation.

As with every programming language, writing AutoOPERATOR EXECs
introduces a learning curve and extends the development-testing-debugging
cycle. Some programming languages offer debuggers to shorten this cycle.
AutoOPERATOR provides the EXEC Testing Facility that allows you to
interactively test your AutoOPERATOR EXECs.

What the EXEC Testing Facility Provides

The EXEC Testing Facility includes many common debugging features such
as:

• Real-time execution control

• Variable read/write access

• The establishment of breakpoints (an instruction in the program which,
when encountered, suspends execution and returns control to the tester)

Using the testing facility, you can review and change the state of the program
or its environment during processing, or you can terminate the test altogether.
You can debug EXECs in a non-standalone system so the EXEC Testing
Facility also incorporates special precautions to safeguard the status of the
production system.

The following sections introduce the general concepts of the EXEC Testing
Facility and describe how to use the facility to debug AutoOPERATOR
EXECs. A short example demonstrating different functions is also provided.

Overview

The EXEC Testing Facility provides a full-screen interactive interface you
can use to debug AutoOPERATOR EXECs. During testing, the execution of
the EXEC is totally under your control. At all times, it displays the EXEC
with the current statement highlighted and allows you to see immediately
information such as variable values and the states of OSPI sessions which
would otherwise take time to obtain.
BMC Software, Inc., Confidential and Proprietary Information

13-2 MAINVIEW AutoOPERATOR Advanced Automation Guide

Overview
BMC Software, Inc., Confidential and Proprietary Information

Two primary display formats are supplied: one for the less experienced user
and one for the more experienced developer.

What Breakpoints Are

Warning! “Minimizing EXEC Processing Time” on page 6-22 describes
how to use the MVS Virtual Lookaside Facility to minimize the
amount of CPU used by EXECs. The EXEC Testing Facility
does not allow you to test EXECs stored in VLF cache more
than once per SS session.

The first time you attempt to test an EXEC, the Testing Facility
gets control of the EXEC with TSO OPEN SYSPROC and the
test is run. However, if you attempt to test the EXEC a second
time, EXEC will be scheduled and the Testing Facility is
bypassed.

This occurs because once the EXEC is read into the VLF cache,
the EXEC Testing Facility cannot get control over the execution
of the EXEC. For more information, refer to “Minimizing EXEC
Processing Time” on page 6-22.

Breakpoints are spots you can set within an EXEC that suspend execution of
the program and allow you to control the EXEC.

Scenario:

An EXEC gathers data in the first hundred lines of its code and VPUTs these
variables to the LOCAL variable pool. The EXEC retrieves these variables,
produces a report, and terminates. Suppose you find that the report seems to
contain errors and you believe its because the LOCAL variables were set
incorrectly.

The problem is that LOCAL variables are deleted when the EXEC terminates
so you cannot verify how the variables were set. With the testing facility, you
can stop the EXEC before the report is produced. Now, you can review the
variables’ settings and perhaps find that that you have to change the EXEC to
produce the desired results.

This approach is preferable to creating a loop within the program that writes
the contents of all variables to the AutoOPERATOR log, especially if there
are a lot of variables in question.

Division of Breakpoints

Breakpoints are divided into two groups: Unconditional and Conditional.
Chapter 13 Testing and Debugging EXECs Interactively 13-3

Overview
Unconditional Breakpoints

Unconditional breakpoints cause an EXEC to always suspend execution
before or after a statement.

You can set unconditional breakpoints before or after any IMFEXEC
statement. This means that whenever the EXEC encounters an unconditional
breakpoint, the program stops and you have control of the EXEC. The
program remains suspended until you issue a command for it to resume
processing.

Conditional Breakpoints

Conditional breakpoints are not associated with a particular program
statement. Instead, they can be associated with the contents of one or more
variables. These breakpoints may be combined using Boolean operators
(such as and, or, and/or). There are many applications for this type of
breakpoint.

For example, you might have a program that produces a report on all DASD
devices in the system. An inner loop obtains information for one device at a
time and then calls a subroutine to print a status line. Suppose the status for
one device, for example unit address AFC, always seems to be incorrect.

Setting an unconditional breakpoint at the beginning of the subroutine is not
helpful because the breakpoint is met for every device and your data center
may have hundreds of DASD devices.

The better solution is to:

• Locate the variable containing the current unit address for which
reporting is to be done

• Establish a conditional breakpoint that suspends program execution when
this variable contains the value AFC

• Restart the program

Setting a conditional breakpoint causes the program to stop whenever
processing for this device is about to begin and you can review surrounding
code.
BMC Software, Inc., Confidential and Proprietary Information

13-4 MAINVIEW AutoOPERATOR Advanced Automation Guide

Overview
How to Use Variables

Special precautions have been taken so that an EXEC being tested has VGET
access but no VPUT/VDEL access to PROFILE and SHARED variables.
This is because the PROFILE and SHARED variables may be in use and
shared by other EXECs in production.

Therefore, an EXEC being tested possesses two additional variable pools: the
PROFILE TEST and SHARED TEST pool. These two pools are logically
concatenated ahead of the live pools so that VGET requests may be satisfied
from the actual SHARED and PROFILE pools while VPUT and VDEL
requests are always directed to the test pools.

However, these new pools now create a problem in the following scenario.

Scenario:

Assume variable ABC exists in the SHARED pool prior to the debugging of
an EXEC. When the EXEC initially VGETS its value, the test pool is
searched first. Because variable ABC is not in the test pool, it is retrieved
from the SHARED pool. Subsequently, the EXEC issues a VDEL ABC
SHARED command. This removes the variable from the test pool, but does
not access the live pool. If another VGET ABC SHARED statement follows
in the EXEC, the variable would be retrieved from the SHARED pool again
which would be the incorrect thing to do.

To protect against this scenario, the EXEC Testing Facility maintains a list of
all DELETE requests for the variables in the SHARED and PROFILE pool
and checks this list before attempting to retrieve a value from either of these
pools. Note while this eliminates the dilemma described above it may also be
confusing because another EXEC which is not being tested might access the
variable.

How to Use the EXEC Testing Facility with OSPI EXECs

Warning! A variable that has been deleted from the SHARED or PROFILE
pool using explicit or pattern matching means that it still exists in
those pools but all attempts to access it with VGET or VPUT
commands are treated as if it had actually been removed

The Open Systems Procedural Interface allows EXECs to interact with
applications that usually exchange information only with physical terminals.
The EXEC Testing Facility allows you to determine the state of OSPI
sessions which can help you determine why your OSPI EXEC is not
working.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 13 Testing and Debugging EXECs Interactively 13-5

Overview
Scenario:

Assume an OSPI EXEC logs on to a TSO user ID. At the TSO READY
prompt, you enter PDF to invoke ISPF/PDF. At some point, the EXEC begins
issuing error messages indicating that you attempted to enter data into a
protected field. You can invoke the EXEC in the testing facility and stop the
EXEC with an unconditional breakpoint set immediately before the statement
causing the error.

With the EXEC interrupted, you can display and examine the current buffer
image of the EXEC. You may find that the amount of broadcast messages
received during logon exceeded one screenful and if the EXEC code does not
take this possibility into consideration then no input fields existed to enter the
PDF command.

How to Use the IMFEXEC BKPT Statement

EXECs containing large amounts of logic code may be hard to debug since
breakpoints can be set only at IMFEXEC statements. If an EXEC does not
include any of these commands, you have control of the EXEC only upon
entry. To solve this problem, AutoOPERATOR includes the IMFEXEC
BKPT statement.

The IMFEXEC BKPT statement works only when the EXEC is being tested
with the EXEC Testing Facility. When the EXEC is scheduled any other
time, the statement produces no effect and does not perform any function.
IMFEXEC BKPT also does not change the current value of IMFCC.

For testing purposes, you can set breakpoints with IMFEXEC BKPT in the
EXEC where normally no IMFEXEC statement would be found. The
IMFEXEC BKPT statement imposes minimal overhead and it does not
impact the performance of the EXEC so when the EXEC is moved into
production, these statements, like comments, do not need to be removed.

How to Trace the Execution of the EXEC

The EXEC Testing Facility produces a history of the Another feature of the
EXEC Testing Facility is the ability to review the execution history of the
tested EXEC. Sometimes, an EXEC may branch to a particular statement and
it is not apparent how it got there. The debugging trace contains, among other
things, all recently executed IMFEXEC statements. This history provides a
good indication about the logic path the program has taken. The trace
information, similar to system traces, is maintained in a wrap-around buffer
and wraps after collecting 379 lines of data. This means the most recent
information is always available and the trace buffer never runs out of storage.
BMC Software, Inc., Confidential and Proprietary Information

13-6 MAINVIEW AutoOPERATOR Advanced Automation Guide

Accessing the EXEC Testing Facility
What to Set Up before Using the EXEC Testing Facility

Before any EXECs can be tested, a minimum of setup work is required.
These EXECs may require that the IMFxxxx variables contain certain values
or that parameters being passed to the EXEC are present.

This setup work is relatively straightforward but may be time-consuming. In
many cases, an EXEC requires more than one iteration of the coding-
debugging cycle, during which the time spent for test setup can become
significant.

To speed up this process, a SAVE feature has been built into the variable
related application. SAVE allows all TSO variables to be saved with their
current values and to be retrieved at a later point in time while debugging
either the same or any other EXEC. The data is stored in the
AutoOPERATOR subsystem (SS) so that it can easily be reused not only by
the current user but also by any other user. Predefined customized patterns by
EXEC type (ALERT-initiated EXEC, Rule-initiated EXEC and so on) may
be stored. Later, they can serve as patterns that require minimal modification.
The storage mechanism is self-reorganizing and geared towards multi-user
access.

Accessing the EXEC Testing Facility

Access the EXEC Testing Facility through the EXEC Management Facility.
Figure 13-1 shows an example.

Figure 13-1 EXEC Management Application Panel

BMC Software ------------------ EXEC Management ----------------- AutoOPERATOR
COMMAND ===> TGT ===> SYSC
INTERVAL ==> 1 DATE --- 01/01/29
STATUS --- INPUT Scroll right/left TIME --- 07:29:58
Primary command: Sort
 EXECs defined 159 Scheduled 2 Enabled 159
 High Priority running 0 Queued 0 1
 Norm Priority running 0 Queued 0 7

 PRESS EXPAND TO VIEW EXEC ACTIVITY
 (B)ROWSE, (E)NABLE, (D)ISABLE, (S)ELECT EXEC, (T)EST EXEC

LC NAME STATUS GROUP FUNCTION CODE AUTHOR DESCRIPTION
 ________ _ ________ ________ __ ________ _________________________
_ PAEXP01 ENABLED CIM4
_ PAEXP02 ENABLED CIM4
_ PAGPNL ENABLED CIM4
_ PALIST ENABLED CIM4X
T PARSE ENABLED SYSTEMS UTIL ERNST ENQ CHECKER FOR MULTISYST
_ PATTERN ENABLED RAE2
_ POST ENABLED RAE1
_ PRGAAO ENABLED RAE1
_ PROV1 ENABLED RAE1
BMC Software, Inc., Confidential and Proprietary Information

Chapter 13 Testing and Debugging EXECs Interactively 13-7

Accessing the EXEC Testing Facility
Once the EXEC Management panel is displayed, to test an EXEC:

Step 1 Locate the EXEC name in the member list.

Step 2 Place a T (for Test EXEC) in the LC column.

In Figure 13-1, an EXEC named PARSE is selected to be tested.

Step 3 Press the ENTER key.

The EXEC is loaded and the EXEC Test panel is automatically displayed
(Figure 13-2 on page 13-8).

Figure 13-2 EXEC Test Control Panel

BMC Software --------------------- EXEC Test ---------------------------------
COMMAND ===>
EXEC === PARSE ID === 3 DATE --- 01/01/01/29
Options: B - Browse EXEC output V - Variable access TIME --- 07:59:48
 C - Conditional Breakpoints O - OSPI session display
Primary Commands:
 STEP - Single step execution CONTinue - Execute, stop at breakpoints
 RUN - Execute without stopping CANcel - Terminate execution
 L - Locate by line number Find - Find string
 OFF - Remove all breakpoints CMDSHOW ON/OFF -Show/remove this display
 SKIP - Skip current statement FORCE - Force terminate EXEC
 VARON/VAROFF | EXPAND - Variable substitution on current line
Line Commands --- Break (A)fter, Break (B)efore, (O)ff

 B->PROC 2 P1 DSNAME 00001
 /*** 00002
 /* 00003
 /* DOC GROUP(SYSTEMS) AUTHOR(ERNST) FUNC(UTIL) 00004
 /* DOC DESC(ENQ CHECKER FOR MULTISYSTEM) 00005
 /* 00006
 /*** 00007
 GLOBAL NROFTARGETS 00008
 SET EOF=FALSE 00009
 SET NROFTARGETS=0 00010

The EXEC Test Control panel shows a scrollable listing of the EXEC at the
bottom of the panel. The upper portion of the panel contains information
about the available commands. Whenever an EXEC is tested, the debugger
suspends execution before the first statement.

The current position of the EXEC during testing is indicated by three factors:

• The line is highlighted

• An arrow to the left of it points at it

• The character B (for before) or A (for after) prefixes it
BMC Software, Inc., Confidential and Proprietary Information

13-8 MAINVIEW AutoOPERATOR Advanced Automation Guide

Accessing the EXEC Testing Facility
The field near the top of the panel, labeled EXEC, contains the name of the
currently tested member. When working with nested EXECs (EXECs that
call other EXECs as subroutines using the IMFEXEC SELECT WAIT(YES)
command), the debugger always reflects the name of the EXEC currently
executing. Therefore, the value of the EXEC field can change during the
debugging session and may be used to establish a point of reference for the
level of processing.

If you are debugging an EXEC (EXECA) that calls another EXEC (EXECB)
with IMFEXEC SELECT WAIT(NO), then EXECB will execute and the
debugging application has no control over EXECB and EXECB cannot be
debugged.

The field ID shows the identification assigned to the current thread, so it
remains constant throughout the debugging session. This field also reflects
the number of EXECs executed since the last AutoOPERATOR SS restart
(this number does not include nested EXECs).

Since a large portion of the panel is taken up by command information that is
not required by the more advanced user, the bottom portion of the panel can
be expanded to cover the upper portion of the panel.

To expand the view, issue the CMDSHOW OFF primary command. The panel
will look like Figure 13-3:

Figure 13-3 EXEC Test Control Panel—Advanced Format

BMC Software ---------------------- EXEC Test -------------------- AutoOPERATOR
COMMAND ===>
EXEC === PARSE ID === 3

 B->PROC 2 P1 DSNAME 00001
 /*** 00002
 /* 00003
 /* DOC GROUP(SYSTEMS) AUTHOR(ERNST) FUNC(UTIL) 00004
 /* DOC DESC(ENQ CHECKER FOR MULTISYSTEM) 00005
 /* 00006
 /*** 00007
 GLOBAL NROFTARGETS 00008
 SET EOF=FALSE 00009
 SET NROFTARGETS=0 00010
 ERROR DO 00011
 IF &LASTCC=400 THEN DO 00012
 SET EOF=TRUE 00013
 CLOSFILE MYJNT 00014
 RETURN 00015
 END 00016
 ELSE DO 00017
 EXIT 00018
 END 00019
 END 00020
BMC Software, Inc., Confidential and Proprietary Information

Chapter 13 Testing and Debugging EXECs Interactively 13-9

Accessing the EXEC Testing Facility
Commands

The following application commands can be issued on the COMMAND line:

Command Function

B Browses the EXEC trace wraparound buffer.

C Sets and resets conditional breakpoints.

V Displays, deletes, and changes variable contents.

O Displays OSPI buffer images.
BMC Software, Inc., Confidential and Proprietary Information

13-10 MAINVIEW AutoOPERATOR Advanced Automation Guide

Accessing the EXEC Testing Facility
In addition to these commands, the following primary commands can be
issued at the COMMAND line:

Command Function

CANCEL Terminates execution of the EXEC and returns to the EXEC
Management panel.

This command is successful only if the EXEC has returned control
to you by using a breakpoint (see “How to Use the IMFEXEC
BKPT Statement” on page 13-6 for more information).

CMDSHOW Uses the following parameters to control the presentation format of
the EXEC Test Control panel:

ON Turns command help on

OFF Turns command help off

CONTINUE Resumes EXEC processing until the next breakpoint is
encountered.

EXPAND Displays the interpreted buffer image of the current line with all
functions and variables substituted. A separate panel is used to
accommodate continuation lines.

Find Attempts to locate the argument in the current EXECs source and
repositions the display accordingly.

FORCE Terminates execution of the EXEC. This command should be used
as a last resort. It functions similar to the .CANCEL BBI
command.

GO Is an alias for CONTINUE.

Locate Uses the argument so that the relative line with the given line
number is displayed at the top.

OFF Removes all conditional or unconditional breakpoints set for the
currently displayed EXEC.

RUN A combination of OFF and CONTINUE. All breakpoints are
removed and EXEC processing resumes.

SKIP When positioned before an IMFEXEC statement, this command
skips processing of that specific IMFEXEC statement and resumes
EXEC processing.

STEP Resumes execution of the EXEC until the next IMFEXEC
statement is encountered and the STEP command returns control to
you.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 13 Testing and Debugging EXECs Interactively 13-11

Accessing the EXEC Testing Facility
VARON Turns current line interpretation on. The current line is shown in
interpreted instead of source line format.

VAROFF Turns current line interpretation off. The current line is shown in
source line instead of interpreted format. This is the initial setting.

Using Line Commands

The following line commands can be entered in the input field (shown as an
underscore character to the left of every IMFEXEC statement in the source):

Command Function

A Establishes a breakpoint after the selected statement.

Execution control is returned to you immediately after processing
this statement. An A to the left of the statement serves as a
reminder that this type of breakpoint has been set.

B Establishes a breakpoint before the selected statement.

Execution control is returned to you immediately before processing
this statement. Use this form of breakpoint if you want to use the
SKIP primary command. A B to the left of the statement serves as
a reminder that this type of breakpoint has been set.

O Removes all breakpoints from the indicated line.

Displaying Interpreted Source Statements

This command toggles the display of the current source line to an interpreted
format. This means that the following have been completed on this line:

• All TSO/REXX functions have already been executed

• All variables have been evaluated and replaced by their values

This is most easily understood by looking at the following two panels. Figure
13-4 shows the source code exactly as it is found in the member of the
SYSPROC concatenation. The current statement contains the variable name
&NROFTARGETS.
BMC Software, Inc., Confidential and Proprietary Information

13-12 MAINVIEW AutoOPERATOR Advanced Automation Guide

Accessing the EXEC Testing Facility
Figure 13-4 EXEC Test Panel with the VAROFF Option

BMC Software --------------------- EXEC Test -------------------- AutoOPERATOR
COMMAND ===>
EXEC === PARSE ID === 3 DATE --- 01/01/29
Options: B - Browse EXEC output V - Variable access TIME --- 14:50:44
 C - Conditional Breakpoints O - OSPI session display
Primary Commands:
 STEP - Single step execution CONTinue - Execute, stop at breakpoints
 RUN - Execute without stopping CANcel - Terminate execution
 L - Locate by line number Find - Find string
 OFF - Remove all breakpoints CMDSHOW ON/OFF -Show/remove this display
 SKIP - Skip current statement FORCE - Force terminate EXEC
 VARON/VAROFF | EXPAND - Variable substitution on current line
Line Commands --- Break (A)fter, Break (B)efore, (O)ff

 SET I = &I + 1 00052
 END 00053
 IF &TYPE=MVS THEN DO 00054
 SET NROFTARGETS=&NROFTARGETS+1 00055
 SET MTARGET&NROFTARGETS = &TARGET 00056
_ B B-> IMFEXEC VPUT MTARGET&NROFTARGETS LOCAL 00057
 END 00058
 END 00059
 *************************** END OF DATA ****************************

Figure 13-5 shows the current line after interpretation with excessive blanks
and possible comments removed. It also substitutes the value of the variable
&NROFTARGETS for its name.

Note that not only variables are substituted but also all other references are
resolved. The line will always only show literals instead of functions,
variables, and so on.

Figure 13-5 EXEC Test Panel with the VARON Option

BMC Software --------------------- EXEC Test -------------------- AutoOPERATOR
COMMAND ===>
EXEC === PARSE ID === 3 DATE --- 01/01/29
Options: B - Browse EXEC output V - Variable access TIME --- 14:54:00
 C - Conditional Breakpoints O - OSPI session display
Primary Commands:
 STEP - Single step execution CONTinue - Execute, stop at breakpoints
 RUN - Execute without stopping CANcel - Terminate execution
 L - Locate by line number Find - Find string
 OFF - Remove all breakpoints CMDSHOW ON/OFF -Show/remove this display
 SKIP - Skip current statement FORCE - Force terminate EXEC
 VARON/VAROFF | EXPAND - Variable substitution on current line
Line Commands --- Break (A)fter, Break (B)efore, (O)ff

 SET I = &I + 1 00052
 END 00053
 IF &TYPE=MVS THEN DO 00054
 SET NROFTARGETS=&NROFTARGETS+1 00055
 SET MTARGET&NROFTARGETS = &TARGET 00056
_ B B->IMFEXEC VPUT MTARGET1 LOCAL 00057
 END 00058
 END 00059
 *************************** END OF DATA ****************************
BMC Software, Inc., Confidential and Proprietary Information

Chapter 13 Testing and Debugging EXECs Interactively 13-13

Accessing the EXEC Testing Facility
Tracing Interpreted Source Statements

The EXEC Trace panel shows the most recently executed IMFEXEC
statements, sorted in ascending order, by execution time. The history of the
EXEC’s processing can sometimes help in explaining why a certain program
branch was taken. The EXEC and ID show the same information as in the
EXEC Testing Control panel.

Note: The information in the EXEC Test - Trace panel is not available after
the tested EXEC thread ends.

The trace information of an EXEC that is executing under the EXEC Testing
Facility can be browsed (as shown in Figure 13-6) by entering the primary
command B on the EXEC Testing Control panel.

Figure 13-6 EXEC Trace Panel

BMC Software ----------------- EXEC Test - Trace ----------------- AutoOPERATOR
COMMAND ===>
 EXEC === PARSE ID === 3 DATE --- 01/01/29
 TIME --- 15:01:51
14:48:43 TRACE * - - START OF TEST TRACE - - *
14:48:43 BEFORE IMFEXEC BKPT
14:49:20 AFTER IMFEXEC BKPT
14:49:21 BEFORE IMFEXEC BKPT
14:49:49 AFTER IMFEXEC BKPT
14:49:49 BEFORE IMFEXEC BKPT
14:50:13 AFTER IMFEXEC BKPT
14:50:13 BEFORE IMFEXEC VPUT MTARGET1 LOCAL
 ************************* END OF DATA **************************

Setting Conditional Breakpoints

The Conditional Breakpoints panel provides the capability to set and reset
conditions that, when met, cause EXEC execution to be suspended and
control returned to you (refer to “BKPT” on page 12-32 for more information
about conditional breakpoints).

Note: The specified conditions are checked whenever an IMFEXEC
statement is encountered. If a condition is met but no IMFEXEC
statement encountered, the breakpoint does not trigger.

The C primary command issued from the EXEC Test panel invokes the
Conditional Breakpoint Control panel as shown in Figure 13-7.
BMC Software, Inc., Confidential and Proprietary Information

13-14 MAINVIEW AutoOPERATOR Advanced Automation Guide

Accessing the EXEC Testing Facility
Figure 13-7 Conditional Breakpoint Control Panel

BMC SOftware ---------------- Conditional Breakpoints ------------- AutoOPERATOR
COMMAND ===>

Exec Name === PARSE Exec ID == 3

 Variable-name Op Value Pool

 NROFTARGETS_____________________ GT 1___________________________________ TSO_
 MTARGET1________________________ =_ SYSC________________________________ LOCL
 ________________________________ __ ____________________________________ ____
 ________________________________ __ ____________________________________ ____
 ________________________________ __ ____________________________________ ____
 ________________________________ __ ____________________________________ ____
 ________________________________ __ ____________________________________ ____
 ________________________________ __ ____________________________________ ____
 ________________________________ __ ____________________________________ ____
 ________________________________ __ ____________________________________ ____
 ________________________________ __ ____________________________________ ____
 ________________________________ __ ____________________________________ ____
 ________________________________ __ ____________________________________ ____

The EXEC and ID fields carry the same contents as in the EXEC Testing
Control panel. You can specify up to 13 conditions that must be met for the
EXEC to halt:

Step 1 Specify the name of the variable whose contents are to be examined in one of
the fields of the column labeled Variable-Name.

Step 2 Enter an operator in the column labeled OP.

Step 3 Enter a literal against which the comparison will be made in the column
labeled Value.

Step 4 Specify the pool in which the variable to be checked resides in the Pool
column.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 13 Testing and Debugging EXECs Interactively 13-15

Accessing the EXEC Testing Facility
Following is a list of valid operators:

Operator Function

= Equal to (or matches with literal pattern)

EQ Equal to (or matches with literal pattern)

¬= Not equal to

<> Not equal to

NE Not equal to

< Less than

LT Less than

> Greater than

GT Greater than

>= Greater than or equal to

GE Greater than or equal to

<= Less than or equal to

LE Less than or equal to

The POOL column accepts one of the following literals:

Value Interpretation

TSO Standard REXX or CLIST variable

LOCL LOCAL AutoOPERATOR pool

SHAR SHARED AutoOPERATOR pool

PROF PROFILE AutoOPERATOR pool

SHRT SHARED TEST AutoOPERATOR pool (refer to “This chapter
describes testing EXECs with the AutoOPERATOR EXEC Testing
and Debugging Facility.I” on page 13-1)

PRFT PROFILE TEST AutoOPERATOR pool (refer to “This chapter
describes testing EXECs with the AutoOPERATOR EXEC Testing
and Debugging Facility.I” on page 13-1)
BMC Software, Inc., Confidential and Proprietary Information

13-16 MAINVIEW AutoOPERATOR Advanced Automation Guide

Accessing the EXEC Testing Facility
The following rules apply for comparisons:

• If the operator indicates an equal to operation and either the literal or the
variable content contains non-numeric characters, a pattern matching
operation is performed.

For example, if the variable ABC contains the character string ’BAB053
BAC635 BAB059’ and the comparison operator is an equal sign and the
literal specifies ’*BAC635*’, the condition is considered met.

• If both the literal and the variable contain only numeric characters
(possibly prefixed by a sign), a numeric comparison is performed which
may render different results than a character-only comparison.

For example, if the variable contains a value of '0000' and the literal
specifies '0', the condition will be considered met.

All conditions specified on this panel must be met for the EXEC to return
control to you, that is, an implicit AND operator is assumed between all
specifications.

Displaying Variables

This panel displays a scrollable listing of all TSO variables of the currently
executing EXEC, accompanied by all variables found in the
AutoOPERATOR LOCAL pool for this EXEC. In addition, all variables
contained in the PROFILE, SHARED, PROFILE TEST, and SHARED TEST
pool may be shown.

Issuing the primary command V in the COMMAND field of the EXEC
Testing Control panel invokes the panel shown in Figure 13-8.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 13 Testing and Debugging EXECs Interactively 13-17

Accessing the EXEC Testing Facility
Figure 13-8 Variable Selection Panel

BMC Software ------------------ Variable Selection --------------- AutoOPERATOR
 COMMAND ===>
 Primary command: Add Scroll right/left DATE --- 01/01/30
 TIME --- 14:02:31
 LC CMDS --- (S)elect, (D)elete

 Variable Name Pool Value
 _______________________________ LOCL
 _ LINE1 LOCL PARSE
 _ MTARGET1 LOCL SYSB
 _ MTARGET2 LOCL SYSC
 _ MTARGET3 LOCL SYSD
 _ MTARGET4 LOCL BADN
 _ MTARGET5 LOCL ROLF
 ************************* END OF DATA **************************

Two input fields allow you to narrow the focus down to the variables of
interest. You can specify a pattern in the column labeled VARIABLE NAME
that all variables to be displayed must match; for example, entering IMF* (or
IMF for short) displays only all variables beginning with these 3 characters.

If you enter a pattern that ends with a dash (-), you must enter an asterisk
after the dash. For example:

IMF-*

The input field in the column titled POOL accepts either a full or pattern
specification for one of the following values:

Value Interpretation

TSO Standard REXX or CLIST variable

LOCL LOCAL AutoOPERATOR pool

SHAR SHARED AutoOPERATOR pool

PROF PROFILE AutoOPERATOR pool

SHRT SHARED TEST AutoOPERATOR pool (refer to “This chapter
describes testing EXECs with the AutoOPERATOR EXEC Testing
and Debugging Facility.I” on page 13-1)

PRFT PROFILE TEST AutoOPERATOR pool (refer to “This chapter
describes testing EXECs with the AutoOPERATOR EXEC Testing
and Debugging Facility.I” on page 13-1)
BMC Software, Inc., Confidential and Proprietary Information

13-18 MAINVIEW AutoOPERATOR Advanced Automation Guide

Accessing the EXEC Testing Facility
For example, specifying P* displays all variables currently contained in the
PROFILE and PROFILE TEST pools. This display can be scrolled right and
left to show the full value of a variable.

The following line commands can be entered in the input fields in the column
labeled LC:

Command Interpretation

S Select this variable for update or display

D Delete this variable

The ADD primary command may be used to add additional variables to a
particular pool. PROFILE and SHARED variables may be displayed but not
deleted or modified. Refer to “Overview” on page 13-2 for an explanation for
this restriction.

Creating and Modifying Variables

The Variable Add/Update panel shows the complete contents of the selected
variable. If the variables resides in the SHARED or PROFILE pool, the
contents can be examined but not changed. Otherwise, variable name, pool,
and contents are input fields and may be overtyped with new values.

Issuing the ADD primary command or the S line command on the Variable
Selection panel invokes the panel shown in Figure 13-9.

Figure 13-9 Variable Add/Update Panel

 BMC Software ----------------- Variable Add/Update ---------------- AutoOPERATOR
 COMMAND ===>
 Primary command: HEX ON/OFF DATE --- 01/01/30
 TIME --- 14:05:45
 Variable Name ===> MTARGET1
 Pool ===> LOCL
 Value (Enter Below):
 SYSB

To update variable, press END To cancel changes, enter CANCEL
BMC Software, Inc., Confidential and Proprietary Information

Chapter 13 Testing and Debugging EXECs Interactively 13-19

Accessing the EXEC Testing Facility
The Pool input field can contain or accept the following values:

Value Interpretation

TSO Standard REXX or CLIST variable

LOCL LOCAL AutoOPERATOR pool

SHAR SHARED AutoOPERATOR pool (may not be entered)

PROF PROFILE AutoOPERATOR pool (may not be entered)

SHRT SHARED TEST AutoOPERATOR pool (refer to “Overview” on
page 13-2)

PRFT PROFILE TEST AutoOPERATOR pool (refer to “Overview” on
page 13-2)

Keep in mind that you may not make modifications to the PROFILE or
SHARED pools.

The primary command HEX with the parameters ON and OFF toggles the
display to a hexadecimal representation and back as shown in Figure 13-10.

Figure 13-10 Variable HEX Display

 BMC Software ----------------- Variable Add/Update ---------------- AutoOPERATOR
 COMMAND ===>
 Primary command: HEX ON/OFF DATE --- 01/01/30
 TIME --- 14:06:34
 Variable Name ===> MTARGET1
 Pool ===> LOCL
 Value (Enter Below):
 SYSB
 EEEC
 2822

To update variable, press END To cancel changes, enter CANCEL

Updates may be performed in either presentation format.
BMC Software, Inc., Confidential and Proprietary Information

13-20 MAINVIEW AutoOPERATOR Advanced Automation Guide

Accessing the EXEC Testing Facility
Testing OSPI Sessions

This panel contains a list of all OSPI Sessions established during the current
debugging session that have not been explicitly terminated using the
IMFEXEC LOGOFF command.

This panel is invoked by the O primary command of the EXEC Testing
Control panel as shown in Figure 13-11:

Figure 13-11 OSPI Session Panel

 BMC Software ----------------- EXEC Test - OSPI ------------------ AutoOPERATOR
 COMMAND ===>
 EXEC === OSPI ID === 10 DATE --- 01/01/30
 OSPI Sessions owned: (S)elect session to display TIME --- 14:09:18

 LCMD Application ACB used Status
 _ TAOVAP OSPI0000 ACTIVE

 Press END to return

Following is a description of the columns on this panel:

Title Description

Application VTAM ACB name of the application to which a session was
established.

ACB used The VTAM ACB either explicitly specified on the IMFEXEC
LOGON statement using the REQACB keyword or implicitly
picked from the pool assigned to OSPI.

Status One of the following:

ACTIVE The session is currently active. Commands may be
entered against it.

INACTIVE

The session has been terminated either due to a
failure or because an UNBIND was sent from the
session partner. Any DISCONNECTed sessions are
not shown.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 13 Testing and Debugging EXECs Interactively 13-21

Accessing the EXEC Testing Facility
You can see the current buffer image of the session by placing a S in the LC
column and pressing ENTER. The buffer image is displayed until you press
ENTER again.
BMC Software, Inc., Confidential and Proprietary Information

13-22 MAINVIEW AutoOPERATOR Advanced Automation Guide

42
Chapter 14 Using the
AutoOPERATOR-Supplied
Utility EXECs

BMC Software provides a set of utility EXECs located in BBPARM member
BBPROC. These EXECs perform functions or subroutines that sometimes
are called by various other EXECs (for example, as an EXEC-initiated
EXEC). These EXECs also can be invoked by an operator (for example, as an
user-initiated EXEC).

The return codes returned by the EXECs and their meanings are listed with
the discussion of each EXEC. To test a return code, use the variable IMFRC.

“How to Resolve Compound SYSPROG Variables” on page 14-4 describes
calling conventions and requirements.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 14 Using the AutoOPERATOR-Supplied Utility EXECs 14-1

Distributed Utility EXECs
Distributed Utility EXECs

A list of the distributed utility EXECs follows:

EXEC Name Description

@STATASK Command interface to start tasks

CANEXEC Cancels DELVARS on user specification

DELVARS Deletes variables from a pool

MUT001C Issues $E, $P, and $C JES2 commands

SUBMIT Determines which SS will handle job submission

SUBMITOR Submits jobs on the target SS

@TIMER Interface EXEC to timer queues; this drives EXECs/events

JES2DI Interface EXEC to JES2’s $DI command

JES2DQ Interface EXEC to JES2’s $DQ command

CNVSECS Convert time HH:MM:SS format to seconds

CNVTIME Convert seconds to HH:MM:SS format

QAODUMP Submits commands to obtain a console dump
BMC Software, Inc., Confidential and Proprietary Information

14-2 MAINVIEW AutoOPERATOR Advanced Automation Guide

Distributed Utility EXECs
SYSPROG Utility EXECs

The following lists the utility EXECs that allow you to interface with
SYSPROG services. The following naming convention is used for all the
SYSPROG utility EXECs:

Rxxx

where xxx is the first three characters of the SYSPROG service.

EXEC Name Description

RASM Interface to the SYSPROG ASM service

RCPU Interface to the SYSPROG CPU service

RCSS Interface to the SYSPROG CSSUM service

RIO Interface to the SYSPROG IO service

RMDE Interface to the SYSPROG MDEV service

RMON Interface to the SYSPROG MON service

RMPA Interface to the SYSPROG MPA service

RMTP Interface to the SYSPROG MTP service

RPAG Interface to the SYSPROG PAGING service

RPRO Interface to the SYSPROG PRO service

RREP Interface to the SYSPROG REP service

RREPRX Interface to the SYSPROG REP service

RRES Interface to the SYSPROG RES service

RRSM Interface to the SYSPROG RSM service

RSTA Interface to the SYSPROG STA service

RSYS Interface to the SYSPROG SYS service

RTPI Interface to the SYSPROG TPIO service

RTSU Interface to the SYSPROG TSU service
BMC Software, Inc., Confidential and Proprietary Information

Chapter 14 Using the AutoOPERATOR-Supplied Utility EXECs 14-3

How to Resolve Compound SYSPROG Variables
How to Resolve Compound SYSPROG Variables

The SYSPROG utility EXECs are called by other EXECs with the
WAIT(YES) parameter. These EXECs produce LOCAL variables that are
available to their callers upon return; the variables are prefixed with the name
of the EXEC. The LOCAL variables can be accessed with the IMFEXEC
VGET command by naming the specific variable or in a do-loop if more than
one variable of the same type is required.

Warning! Compound variables in the format of RREPI(xxx) need to be
resolved prior to their usage in any function; otherwise, the
results are unpredictable.

An example of using a SYSPROG utility EXEC is shown in Figure 14-1.

Figure 14-1 Example of SYSPROG Utility Usage

 PROC 1 REPLIES
 IMFEXEC SELECT EXEC(RREP) WAIT(YES) <=== CALL REPLIES EXEC
 IMFEXEC VGET (RREPROL1) LOCAL <=== NUMBER OF OUTPUT LINES
 RETURNED IN LOCAL POOL
 SET &N = 1
 IMFEXEC MSG ’LIST OF OUTSTANDING REPLIES’
 DO WHILE (&N LE &RREPROL1)
 IMFEXEC VGET (RREPI&N RREP1&N) LOCAL <=== LOCAL VARIABLE
 SET &REPID = &&RREPI&N <=== RESOLVED COMPOUND VARIABLE
 SET &MSG = &&RREP1&N <=== FOR PROCESSING
 WITHIN EXEC
 IMFEXEC MSG ’MESSAGE = &MSG, REPLYID = &REPID’
 SET &N = &N +1
 END

@STATASK: Start Tasks

The EXEC @STATASK starts a specific task. It ensures that the task is not
already active before issuing the START command.

The following statement shows the format of the call from an EXEC:

IMFEXEC SELECT EXEC(@STATASK TASKNAME ID PARM)

Table 14-1 lists the @STATASK parameters.
BMC Software, Inc., Confidential and Proprietary Information

14-4 MAINVIEW AutoOPERATOR Advanced Automation Guide

How to Resolve Compound SYSPROG Variables
Following is a list of return codes from @STATASK:

Return Code Description

0 Request successfully completed

8 Invalid parameters specified

12 Task is already active

16 Task failed to start

CANEXEC: Cancel Delvars

This EXEC cancels the DELVARS EXEC. When the ALERT produced by
DELVARS is selected, the ALERT application schedules the CANEXEC.

The CANEXEC is an internal utility and there are no external user call
interfaces.

Following is a list of return codes from CANEXEC:

Return Code Description

0 Request successfully completed

12 EXEC ID to cancel not passed

DELVARS: Delete Variables

This EXEC is invoked either by other EXECs or by the operator to delete all
or selected variables from a specified pool.

Table 14-1 @STATASK Parameters

Parameter Required? Description

taskname Yes Name of the task to start; for example:
RESOLVE

id No ID name of the task; for example:
RESOLVE.R
where R is the ID

parameter No Any parameters for the task. If required, include
the PARM= keyword; for example:
PARM=SOFTIPL
BMC Software, Inc., Confidential and Proprietary Information

Chapter 14 Using the AutoOPERATOR-Supplied Utility EXECs 14-5

How to Resolve Compound SYSPROG Variables
The following statement shows the format of the call from EXEC:

IMFEXEC SELECT EXEC(DELVARS PARM POOL)

Use the following format for a console-initiated request:

%DELVARS PARM POOL

If the parameter POOL is not specified, POOL defaults to SHARED pool.

Table 14-2 lists the DELVARS parameters.

Following is a list of return codes from DELVARS:

Return Code Description

0 Request successfully completed

8 Variable does not exist

12 Specified POOL or TYPE is incorrect

MUT001C: Issue $E, $P, and $C Commands

This EXEC is invoked by the JESDOWN EXEC to reset and drain a specified
line, remote, or printer. It also can reset and cancel a specified job.

The following statement shows the format of the call from EXEC:

IMFEXEC SELECT EXEC(MUT001C RMLNPRJB RLPJ)

Table 14-3 lists the MUT001C parameters.

Table 14-2 DELVARS Parameters

 Parameter Required? Description

parameter Yes Name of the variable to delete; to delete all variables
from a pool, specify an asterisk (*) or ALL

pool No If specified, it must be SHARED or PROFILE; default is
SHARED

TYPE [SHORT|LONG] Specifies whether the EXEC is to delete long or short
variables
BMC Software, Inc., Confidential and Proprietary Information

14-6 MAINVIEW AutoOPERATOR Advanced Automation Guide

How to Resolve Compound SYSPROG Variables
There are no return codes from MUT001C.

SUBMIT: Find Subsystem Handling Job Submissions

This EXEC is invoked by any EXEC or TS user who needs to submit a batch
job. The SUBMIT EXEC VGETs the value of the SHARED pool variable
SUBMITSS. Then it calls the SUBMITOR EXEC to submit the job on the
target SS whose identification was VPUT at initialization.

The following statement shows the format of the call from EXEC:

IMFEXEC SELECT EXEC(SUBMIT JOBNAME)

Use the following format for a TS-initiated request:

%SUBMIT JOBNAME

Table 14-4 lists the SUBMIT parameters.

Following is a list of return codes from SUBMIT:

Return Code Description

0 Call to SUBMITOR successful

8 Cannot VGET SUBMITSS variable

12 No jobname passed

Table 14-3 MUT001C Parameters

Parameter Required? Description

rmlnprjb Yes JES2 REMOTE, LINE, PRINTER, or JOBNAME to issue
$E/$P/$C commands against

rlpj Yes A one character literal indicating that the first value is a
R(emote), L(ine), P(rinter) or J(job)

Table 14-4 SUBMIT Parameters

 Parameter Required? Description

jobname Yes Name of the job to submit
BMC Software, Inc., Confidential and Proprietary Information

Chapter 14 Using the AutoOPERATOR-Supplied Utility EXECs 14-7

How to Resolve Compound SYSPROG Variables
SUBMITOR: Submit Jobs on the Target Subsystem

This EXEC is invoked by the SUBMIT EXEC or other EXEC to submit a
batch job.

The following statement shows the format of the call from EXEC:

IMFEXEC SELECT EXEC(SUBMITOR JOBNAME)

Table 14-5 lists the SUBMITOR parameters.

Following is a list of return codes from SUBMITOR:

Return Code Description

0 Job was successfully submitted

12 No jobname passed

RASM: Auxiliary Storage Manager Information

Use the RASM EXEC to determine the last IPL type, the address of the
ASMVT, the total number of slots, the number and percentage of available
slots, the largest user of slots, and the percentage owned along with
information on all the paging volumes.

The following statement shows the format of the call from EXEC:

IMFEXEC SELECT EXEC(RASM OPTS) WAIT(YES)

Table 14-6 lists the RASM parameters.

Table 14-5 SUBMITOR Parameters

Parameter Required? Description

jobname Yes Name of the job to submit

Table 14-6 RASM Parameters

Parameter Required? Description

opts No If specified, must be MAP

sortfld No Name, VIO NVIO (Corresponds to SYSPROG input
parameters)
BMC Software, Inc., Confidential and Proprietary Information

14-8 MAINVIEW AutoOPERATOR Advanced Automation Guide

How to Resolve Compound SYSPROG Variables
Following is a list of return codes from RASM:

Return Code Description

8 Security failure

16 Parameter neither null nor map

Table 14-7 lists the variables returned by RASM in the LOCAL POOL.

Table 14-7 Variables Returned by RASM in the LOCAL POOL

Variable Name Type Description

rasmb(xxx) Data Burst

 Note: Where XXX corresponds to the output line number

rasmf(xxx) Data Free slots

rasmiplt Data IPL type

rasmj(xxx) Data Jobname

rasml(xxx) Data Label of Volume

rasmn(xxx) Data Non-VIO slots

rasmp(xxx) Data Percentage free

rasmrol1 Control Number of output lines

rasmrol2 Control Start line number of page data set information

rasmrol3 Control Start line number of map information

rasms(xxx) Data Size of data set in slots

rasmslav Data Available slots

rasmslpc Data Percentage available

rasmsusr Data Largest slot user

rasmt(xxx) Data Type of page data set

rasmtlsl Data Total slots

rasmu(xxx) Data Unit address of page data set

rasmuspc Data Percentage largest user is holding

rasmv(xxx) Data VIO slots

rasmvta Data Address of vector table
BMC Software, Inc., Confidential and Proprietary Information

Chapter 14 Using the AutoOPERATOR-Supplied Utility EXECs 14-9

How to Resolve Compound SYSPROG Variables
RCPU: CPU Usage Information

Use the RCPU EXEC to determine the top 10 CPU users, overall MVS
overhead, total batch usage, total TSO usage, and overall CPU busy.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RCPU OPTS) WAIT(YES)

Table 14-8 lists the RCPU parameters.

Following is a list of return codes from RCPU:

Return Code Description

8 Security failure

Table 14-9 lists the variables returned by RCPU in the LOCAL POOL for
non-PR/SM systems.

Table 14-8 RCPU Parameters

Parameter Required? Description

opts No Number of seconds to monitor CPU usage; if not specified,
the default is 10 seconds

Table 14-9 Variables Returned by RCPU in the LOCAL POOL for Non-PR/SM Systems (Part 1 of 2)

 Variable Name Type Description

rcpub(xx) Data CPU percent busy

rcpubatp Data Percentage of CPU used by batch

rcpubatt Data Seconds of CPU used by batch

rcpuc(xx) Data CPU number

rcpud(xx) Data Dispatching priority

rcpumsvo Data Seconds of CPU in MVS overhead

rcpumvsp Data Percentage of CPU in MVS overhead

rcpun(xx) Data Name of job

rcpup(xx) Data Priority

rcpurol1 Control Total number of output lines

rcpurol2 Control Number of job related output variable groups

rcpurol3 Control Number of CPU related output groups

rcpus(xx) Data Seconds of CPU used

rcput(xx) Data Type of JOB (STC BAT TSU)
BMC Software, Inc., Confidential and Proprietary Information

14-10 MAINVIEW AutoOPERATOR Advanced Automation Guide

How to Resolve Compound SYSPROG Variables
Table 14-10 lists the variables returned by RCPU in the LOCAL POOL for
PR/SM systems.

RCSS: Common Storage Usage Information

Use the RCSS EXEC to determine the virtual storage usage on an address
space basis.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RCSS) WAIT(YES)

rcputsop Data Percentage of CPU used by TSO

rcputsot Data Seconds of CPU used by TSO

rcpuu(xx) Data Percentage of CPU

Table 14-10 Variables Returned by RCPU in the LOCAL POOL for PR/SM Systems

Variable Name Type Description

rcput(xx) Data Type of address space (STC JOB or TSO)

rcpun(xx) Data Address space name

rcpuu(xx) Data Percentage of CPU used

rcpup(xx) Data Dispatching priority in hexadecimal

rcpud(xx) Data Dispatching priority in decimal

rcpubatp Data Percentage of CPU used by batch address space

rcpustc Data Percentage of CPU used by started task

rcputsop Data Percentage of CPU used by TSO users

rcputtal Data Total: always 100%

rcpurol1 Control Total number of output lines

rcpurol2 Control Number of job related output variable groups

rcpubusy Data Percent of time total complex was processing

rcpuwait Data Percent of time total complex was waiting

rcpuovhd Data Percent of time spent on plex overhead

rcpurcvd Data Percent of time this partition received

rcpurltv Data CPU percent which is this partition’S relative share

rcpuothr Data Percent CPU used by address spaces not listed

rcputotl Data Total CPU percent this partition used of its relative share

Table 14-9 Variables Returned by RCPU in the LOCAL POOL for Non-PR/SM Systems (continued)

 Variable Name Type Description
BMC Software, Inc., Confidential and Proprietary Information

Chapter 14 Using the AutoOPERATOR-Supplied Utility EXECs 14-11

How to Resolve Compound SYSPROG Variables
There are no RCSS input parameters.

Following is a list of return codes from RCSS:

Return Code Description

8 Security failure

16 COMMON STORAGE MONITOR not enabled

Table 14-11 lists the variables returned by RCSS in the LOCAL POOL.

RENQ: SYSPROG ENQUEUE Command

Use the RENQ EXEC to retrieve information about ENQUEUE conflicts.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RENQ)

There are no RENQ input parameters.

Following is a list of return codes from RENQ:

Return Code Description

0 Request completed successfully

4 No enqueue conflicts

8 Security failure

Table 14-11 Variables Returned by RCSS in the LOCAL POOL

 Variable Name Type Description

rcssa(xxx) Data ASID of task

rcssb(xxx) Data SQA used below the 16M line

rcssc(xxx) Data SQA used above the 16M line

rcssd(xxx) Data CSA used below the 16M line

rcsse(xxx) Data CSA used above the 16M line

rcssf(xxx) Data Total SQA used

rcssg(xxx) Data Total CSA used

rcssn(xxx) Data Name of task

rcssrol1 Control Number of output groups
BMC Software, Inc., Confidential and Proprietary Information

14-12 MAINVIEW AutoOPERATOR Advanced Automation Guide

How to Resolve Compound SYSPROG Variables
Table 14-12 lists the variables returned by RENQ in the LOCAL POOL.

RIO: System Input/Output Information

Use the RIO EXEC to find all outstanding non-TP I/Os.

An optional parameter can be passed that limits the I/O information to the
UCB which is passed by the caller.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RIO UCB) WAIT(YES)

Table 14-13 lists the RIO parameters.

Table 14-12 Variables Returned by RENQ in the LOCAL POOL

Variable Name Type Description

renqrol1 Control Number of output lines

renqsc&n Data Scope of ENQUEUE: step, system or systems

renqgl&n Data Global or local

renqm&n Data Major name of ENQUEUE

renqr&n Data Resource name

renqd&n Data Status: owns or wait

renqt&n Data Type: SRC or EXC

renqas&n Data ASID

renqti&n Data Time

renqu&n Data Jobname

renqsy&n Data SYSID

renqrc&n Data Resource count (if reserve is associated with
ENQUEUE)

renqun&n Data Unit address (for reserves) or null

renqvl&n Data Volume serial (for reserves) or null

Table 14-13 RIO Parameters

Parameter Required? Description

ucb No Device address
BMC Software, Inc., Confidential and Proprietary Information

Chapter 14 Using the AutoOPERATOR-Supplied Utility EXECs 14-13

How to Resolve Compound SYSPROG Variables
Following is a list of return codes from RIO:

Return Code Description

0 Request successfully completed

4 No outstanding I/O for device

8 No outstanding I/O in system or security failure

Table 14-14 lists the variables returned by RIO in the LOCAL POOL.

RMDE: Device Monitoring

Use the RMDE EXEC to determine I/O bottlenecks in the system.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RMDE UCB TIME) WAIT(YES)

Table 14-15 lists the RMDE parameters.

Table 14-14 Variables Returned by RIO in the LOCAL POOL

Variable Name Type Description

rioal(xxx) Data Allocations

riodv(xxx) Data Driver

rioia(xxx) Data IOQ address

riojn(xxx) Data Jobname

rioop(xxx) Data Opens

riopd(xxx) Data Paging device

riorol1 Control Number of output lines

riorv(xxx) Data Reserves

rioua(xxx) Data Unit address

riovs(xxx) Data Volume serial

Table 14-15 RMDE Parameters

Parameter Required? Description

ucb No Device address or a range of device addresses to monitor; the
default is all devices

time No Length of time (in seconds) to monitor; the default is 15
seconds
BMC Software, Inc., Confidential and Proprietary Information

14-14 MAINVIEW AutoOPERATOR Advanced Automation Guide

How to Resolve Compound SYSPROG Variables
Following is a list of return codes from RMDE:

Return Code Description

4 All devices are less than 1 percent busy

8 Security failure

16 No specified devices are online

Table 14-16 lists the variables returned by RMDE in the LOCAL POOL.

RMON: Address Space Monitoring

Use the RMON EXEC to monitor an address space to determine if its status
is wait state, looping, or running normally.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RMON TASKNAME) WAIT(YES)

Table 14-17 lists the RMON parameters.

Table 14-16 Variables Returned by RMDE in the LOCAL POOL

Variable Name Type Description

rmdea(xxx) Data ACYL

rmdeb(xxx) Data Device busy

rmdec(xxx) Data Connect time

rmded(xxx) Data Disconnect time

rmdep(xxx) Data Pend time

rmdeq(xxx) Data Q length

rmder(xxx) Data Rate

rmderol1 Control Number of output lines

rmdes(xxx) Data Seek

rmdeu(xxx) Data Device UCB address

rmdev(xxx) Data Volume serial

Table 14-17 RMON Parameters

Parameter Required? Description

taskname Yes Name of task to monitor
BMC Software, Inc., Confidential and Proprietary Information

Chapter 14 Using the AutoOPERATOR-Supplied Utility EXECs 14-15

How to Resolve Compound SYSPROG Variables
Following is a list of return codes from RMON:

Return Code Description

8 Security failure

16 Task name either not specified or not found

Table 14-18 list the variables returned by RMON in the LOCAL POOL.

RMPA: Channel Path Monitoring

Use the RMPA EXEC to monitor the percentage of activity or imbalances of
a channel path.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RMPA PATH TIME) WAIT(YES)

Table 14-19 lists the RMPA parameters.

Table 14-18 Variables Returned by RMON in the LOCAL POOL

 Variable Name Type Description

rmoncpa Data CPU accumulated in last 30 seconds

rmoncpt Data Total CPU used

rmondp Data Priority in page range notation

rmonexa Data EXCPs accumulated in last 30 seconds

rmonext Data Total EXCPs

rmonhp Data Priority in decimal

rmonjn Data Task name

rmonnu Data Task number:sup

rmonpaa Data Pages accumulated in last 30 seconds

rmonpat Data Total pages

rmonpg Data Performance group

rmonpp Data Performance period

rmonsn Data Step name

rmonsua Data Service unit accumulated in last 30 seconds

rmonsut Data Total service units

rmontt Data Task type (TSU STC JOB)*

Note: *Variable will have a null value if started before JES or started as SUB=MSTR.
BMC Software, Inc., Confidential and Proprietary Information

14-16 MAINVIEW AutoOPERATOR Advanced Automation Guide

How to Resolve Compound SYSPROG Variables
Following is a list of return codes from RMPA:

Return Code Description

4 Possible error condition, verify path(s)

8 Security failure

16 Path(s) specification error

Table 14-20 lists the variables returned by RMPA in the LOCAL POOL.

RMTP: Monitor Pending Mounts

Use the RMTP EXEC to find the volume serial number, UCBs, device types,
and address spaces waiting for either tape or DASD mounts.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RMTP) WAIT(YES)

There are no RMTP input parameters.

Table 14-19 RMPA Parameters

Parameter Required? Description

path No Path or range of paths

time No Length of time (in seconds) to monitor

Table 14-20 Variables Returned by RMPA in the LOCAL POOL

Variable Name Type Description

rmpab(xxx) Data Percent busy

rmpap(xxx) Data Channel path

rmparol1 Control Number of output lines
BMC Software, Inc., Confidential and Proprietary Information

Chapter 14 Using the AutoOPERATOR-Supplied Utility EXECs 14-17

How to Resolve Compound SYSPROG Variables
Following is a list of return codes from RMTP:

Return Code Description

4 More than 50 outstanding mounts

8 Security failure

16 No mounts pending

Table 14-21 lists the variables returned by RMTP in the LOCAL POOL.

RPAG: System Wide Paging Information

Use the RPAG EXEC to find paging or demand paging rates.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RPAG) WAIT(YES)

There are no RPAG input parameters.

Following is a list of return codes from RPAG:

Return Code Description

8 Security failure

Table 14-22 lists the variables returned by RPAG in the LOCAL POOL.

Table 14-21 Variables Returned by RMTP in the LOCAL POOL

Variable Name Type Description

rmtpj(xxx) Data Jobname that requested mount

rmtpt(xxx) Data Type of unit

rmtpu(xxx) Data Unit address of mount

rmtpv(xxx) Data Volser of requested volume

Table 14-22 Variables Returned by RPAG in the LOCAL POOL (Part 1 of 2)

Variable Name Type Description

rpagcsa Data CSA paging rate

rpagdmnd Data Demand paging rate
BMC Software, Inc., Confidential and Proprietary Information

14-18 MAINVIEW AutoOPERATOR Advanced Automation Guide

How to Resolve Compound SYSPROG Variables
RPRO: Monitor Progress of an Address Space

Use the RPRO EXEC to report on the progress of a task.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RPRO TASKNAME) WAIT(YES)

Table 14-23 lists the RPRO parameters.

Following is a list of return codes from RPRO:

Return Code Description

0 Request completed successfully

4 Task not found

8 Security failure

16 Task not specified

Table 14-24 lists the variables returned by RPRO in the LOCAL POOL.

rpaglpa Data LPA paging rate

rpagrate Data Total paging rate

rpagrclm Data Page reclaim rate

rpagswap Data Swap paging rate

rpagtime Data Elapsed time since counters last cleared

rpagvio Data VIO paging rate

Table 14-23 RPRO Parameters

Parameter Required? Description

taskname Yes Name of task on which to report progress

Table 14-22 Variables Returned by RPAG in the LOCAL POOL (Part 2 of 2)

Variable Name Type Description
BMC Software, Inc., Confidential and Proprietary Information

Chapter 14 Using the AutoOPERATOR-Supplied Utility EXECs 14-19

How to Resolve Compound SYSPROG Variables
RREP: Retrieve WTOR IDs

The RREP EXEC can be used to retrieve the number and text of 10
outstanding WTORs.

Table 14-24 Variables Returned by RPRO in the LOCAL POOL

Variable Name Type Description

rprocl Data Job class

rprocs Data Current step number

rprodpty Data Decimal version

rprojd Data Job start date

rprolcpu Data CPU limit

rpromsgc Data Message class

rpromsgl Data Message level

rproname Data JOBNAME

rpronumb Data JES2 job number

rpropcpu Data Percentage CPU used

rpropg Data Performance group

rpropgm Data Program name

rpropgnm Data Programmer name

rpropp Data Performance period

rproprty Data Dispatching priority

rprorr Data Region requested

rproru Data Region used

rproscpu Data Step total CPU

rprosrb Data SRB time used (step)

rpross Data Step start time

rprost Data Address space start time

rprostep Data Currently executing step

rprotcb Data TCB time used (step)

rprots Data Total steps

rprotype Data Type of job (STC TSO JOB)

rprovua Data Virtual used above line

rprovub Data Virtual used below line
BMC Software, Inc., Confidential and Proprietary Information

14-20 MAINVIEW AutoOPERATOR Advanced Automation Guide

How to Resolve Compound SYSPROG Variables
If the EXEC receives more then ten WTORs, it ends with a return code of 16,
sets RREPROL1 to 0, issues an error message (REP101E) and deletes all
data variables from the local pool. If you need to process or examine more
then 10 WTORS, use the RREPRX EXEC (see page 21).

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RREP) WAIT(YES)

Table 14-25 lists the RREP parameters.

Following is a list of return codes from RREP:

Return Code Description

8 Security failure

16 Received more than 10 WTORs

Table 14-26 lists the variables returned by RREP in the LOCAL POOL.

RREPRX: Retrieve WTOR IDs

The RREPRX EXEC can be used to retrieve the number and text of all
outstanding WTORs.

Table 14-25 RREP Parameters

Parameter Required? Description

system Yes System ID for which to gather data. The value ALL means
the same as no specification. All replies from a sysplex will
be returned.

Table 14-26 Variables Returned by RREP in the LOCAL POOL

Variable Name Type Description

rrepi(xxx) Data Reply number

rrepn(xxx) Data JES number of task that issued WTOR

rreprol1 Control Number of output lines

rrept(xxx) Data type of task that issued WTOR (STC TSU JOB)

rrep1(xxx) through
rrep9(xxx)

Data First nine words of message

rrep10(xxx) through
rrep12(xxx)

Data Extended to twelfth word of the message
BMC Software, Inc., Confidential and Proprietary Information

Chapter 14 Using the AutoOPERATOR-Supplied Utility EXECs 14-21

How to Resolve Compound SYSPROG Variables
The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RREPRX) WAIT(YES)

Table 14-27 lists the RREPRX parameters.

Following is a list of return codes from RREPRX:

Return Code Description

0 Normal completion

4 No outstanding replies found

8 Security failure

12 Command timed out

16 Error detected. RREPRX EXEC exited.

Table 14-28 lists the variables returned by RREPRX in the LOCAL POOL.

To run RREPRX before JES initialization, one of the following JES versions
must be provided by using a shared variable in BBPARM member
BBIVARxx:

Table 14-27 RREPRX Parameters

Parameter Required? Description

system No System ID for which to gather data. The value ALL means
the same as no specification. All replies from a sysplex will
be returned.
If no system ID is given, the default if the local system ID.

Table 14-28 Variables Returned by RREPRX in the LOCAL POOL

Variable Name Type Description

RREPROL1 Control Number of output lines

rreps.x Data The system ID of the issuer, x = line number

rrept.x Data Type of task, STC, TSU, JOB, ASID or NULL for JES3.
NULL if task was started before JES

rrepn.x Data JES job number of the task or job name if JES3 Null if
task was started before JES

rrepi.x Data The reply number

rrep.x.1-12 Data The first 12 words of the message
BMC Software, Inc., Confidential and Proprietary Information

14-22 MAINVIEW AutoOPERATOR Advanced Automation Guide

How to Resolve Compound SYSPROG Variables
• RREPJES = JES2
• RREPJES = JES3

RRES: Retrieve Outstanding Reserves

Use the RRES EXEC to retrieve information on outstanding device reserves.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RRES) WAIT(YES)

There are no RRES input parameters.

Following is a list of return codes from RRES:

Return Code Description

0 Request completed successfully

4 No outstanding reserves

8 Security failure

Table 14-29 lists the variables returned by RRES in the LOCAL POOL.

Table 14-29 Variables Returned by RRES in the LOCAL POOL (Part 1 of 2)

Variable Name Type Description

rresrol1 Control Number of output lines

rressc(xxx) Data Scope of reserve: systems

rresgl(xxx) Data Global or local

rresm(xxx) Data Major name of reserve

rresn(xxx) Data Minor name of reserve

rressy(xxx) Data SYSID

rresj(xxx) Data Jobname

rresas(xxx) Data ASID

rresc(xxx) Data Status: owns or wait

rrest(xxx) Data Type: SHR OR EXC

rresrc(xxx) Data Reserve count

rress(xxx) Data Pend: yes or no

rresu(xxx) Data Unit address

rresv(xxx) Data Volume serial
BMC Software, Inc., Confidential and Proprietary Information

Chapter 14 Using the AutoOPERATOR-Supplied Utility EXECs 14-23

How to Resolve Compound SYSPROG Variables
RRSM: Real Storage Management Information

The RRSM EXEC returns basic real storage information on a system-wide
basis. It also can produce a detail line for each address space in the system.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RRSM OPTS) WAIT(YES)

Table 14-30 lists the RRSM parameters.

Note: All values for SORTFLD (with the exception of NAME and ASID)
will return only record with the 10 highest values for that field.

Following is a list of return codes from RRSM:

Return Code Description

8 Security failure

16 Other than MAP parameter specified

Table 14-31 lists the variables returned by RRSM in the LOCAL POOL.

rresur(xxx) Data Unit ready: no or null

rresti(xxx) Data Time

Table 14-30 RRSM Parameters

Parameter Required? Description

opts No If specified, must be MAP

sortfld No NAME, ASID, FRAMES, FIXED, <16MB, LSQA, WSS or
PERCENT

Table 14-31 Variables Returned by RRSM in the LOCAL POOL (Part 1 of 2)

Variable Name Type Description

rrsma(xxx) Data ASID of task

rrsmafrm Data Available frames (free)

rrsmb(xxx) Data Fixed below 16 MB line

rrsmb16m Data Fixed frames below 16 MB line

Table 14-29 Variables Returned by RRES in the LOCAL POOL (Part 2 of 2)

Variable Name Type Description
BMC Software, Inc., Confidential and Proprietary Information

14-24 MAINVIEW AutoOPERATOR Advanced Automation Guide

How to Resolve Compound SYSPROG Variables
RSPA: Retrieve DASD Space Information

The RSPA service can be used to retrieve free space and contiguous free
space information. The following statement shows the format of the call from
an EXEC:

IMFEXEC SELECT EXEC(RSPA DEVICE MOUNTED ONLINE SIZE)
WAIT(YES)

The following table lists the RSPA parameters.

rrsmcffr Data Common fixed frames

rrsmcfrm Data Common frames

rrsmffrm Data Fixed frames

rrsml(xxx) Data LSQA frames

rrsmn(xxx) Data Name of task

rrsmnfrm Data Nucleus frames

rrsmofrm Data Online frames

rrsmp(xxx) Data Percentage of online frames allocated

rrsmpffr Data Private fixed frames

rrsmpfrm Data Private frames

rrsms(xxx) Data Storage frames

rrsmsffr Data SQA fixed frames

rrsmw(xxx) Data Working set size

Table 14-31 Variables Returned by RRSM in the LOCAL POOL (continued) (Part 2 of 2)

Variable Name Type Description
BMC Software, Inc., Confidential and Proprietary Information

Chapter 14 Using the AutoOPERATOR-Supplied Utility EXECs 14-25

How to Resolve Compound SYSPROG Variables
Following is a list of return codes from RSTA:

Return Code Description

0 The returned information includes at least one complete DASD
Unit entry.

4 The returned information contains at least one incomplete
(OFFLINE) DASD unit entry (VOLUME = UNKNWN and all
DASD space fields = 0).

Table 14-32 RSPA Parameters

Parameter Required? Description

device No If specified, must be mounted PUBLIC. PRIVATE will select
devices mounted PRIVATE.
Note: DEVICE is required if MOUNTED or ONLINE
parameters are specified.
If ONLINE = ALL is specified, the DASD information returned
includes all OFFLINE devices as well as those ONLINE
devices that meet the selection criteria.

online No Default is ONLINE. If specified, must be:
ONLINE
Selects ONLINE devices only.
OFFLINE
Selects OFFLINE devices only.

ONLINE = OFFLINE is mutually exclusive with the
MOUNTED and SIZE parameters. MOUNTED and
SIZE must be NULL if ONLINE = OFFLINE is
specified.

ALL
Selects OFFLINE and ONLINE devices.

If ONLINE = ALL is specified, the DASD information
returned includes all OFFLINE devices as well as those
ONLINE devices that meet the selection criteria.

size No Default is 0.
ONLINE = OFFLINE is mutually exclusive with the
MOUNTED and SIZE parameters. MOUNTED and SIZE
must be NULL if ONLINE = OFFLINE is specified.
If specified, must be a numeric value between 0 and 999.
The RSPA service will return information for ONLINE DASD
volumes that have more than nnn free space cylinders.

sortfld No Unit, VOLSER, FREE or CONTIG
BMC Software, Inc., Confidential and Proprietary Information

14-26 MAINVIEW AutoOPERATOR Advanced Automation Guide

How to Resolve Compound SYSPROG Variables
8 No information was returned or security failure

An informational message RSPnnnx is displayed that
specifies why no information is returned.

RSPAROL1 is set to zero.

12 An unexpected error message was returned by the SYSPROG
SPACE service.

Message RSP015I displays the error message issued by the
SYSPROG SPACE service. RSPAROL1 is set to zero.

16 Invalid parameters passed to the RSPA service EXEC.

RSPAROL1 is set to zero.

Table 14-33 lists the variables returned by RSPA in the LOCAL POOL.

Table 14-33 Variables Returned by RSPA in the LOCAL POOL

Variable Name Type Description

rsparol1 Data Number of entries in the returned data array.

rspau(xxx) Data Unit number (device address)

rspav(xxx) Data Volume Name
Value is set to UNKNWN for OFFLINE devices.

rspas(xxx) Data Device Mount Attribute:

OFFLINE OR

PRV (PRIVATE)

STR (STORAGE)

PUB (PUBLIC)

rspac(xxx) Data Number of free cylinders (0 if OFFLINE).

rspat(xxx) Data Number of free tracks (0 if OFFLINE).

rspag(xxx) Data Number of contiguous free cylinders (0 if OFFLINE).

rspah(xxx) Data Number of contiguous free tracks (0 if OFFLINE).
BMC Software, Inc., Confidential and Proprietary Information

Chapter 14 Using the AutoOPERATOR-Supplied Utility EXECs 14-27

How to Resolve Compound SYSPROG Variables
RSTA: Retrieve Status of an Address Space

The RSTA EXEC retrieves the status of any or all tasks in the system.

If a task name is specified but not enabled in the system, RSTA sets a return
code of 4, making it easy to determine if a task is enabled.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RSTA TASKNAME) WAIT(YES)

Table 14-34 lists the RSTA parameters.

Following is a list of return codes from RSTA:

Return Code Description

0 Task is enabled

4 Task is not enabled

8 Security failure

12 Service timed out in interface

16 Invalid parameter specified

Table 14-35 lists the variables returned by RSTA in the LOCAL POOL.

Table 14-34 RSTA Parameters

Parameter Required? Description

taskname No Specific task on which to retrieve status information

Table 14-35 Variables Returned by RSTA in the LOCAL POOL (Part 1 of 2)

Variable Name Type Description

rstaa(xxx) Data Address space ID

rstac(xxx) Data CPU time used

rstaf(xxx) Data Real frame count

rstag(xxx) Data Performance group

rstan(xxx) Data Name of task

rstap(xxx) Data Performance period

rstaq(xxx) Data Dispatching queue
BMC Software, Inc., Confidential and Proprietary Information

14-28 MAINVIEW AutoOPERATOR Advanced Automation Guide

How to Resolve Compound SYSPROG Variables
rstaw(xxx) Data Working set size

rsta1(xxx) Data Status 1

rsta2(xxx) Data Status 2

rsta2(rol1) Control Number of output lines

Table 14-35 Variables Returned by RSTA in the LOCAL POOL (Part 2 of 2)

Variable Name Type Description
BMC Software, Inc., Confidential and Proprietary Information

Chapter 14 Using the AutoOPERATOR-Supplied Utility EXECs 14-29

How to Resolve Compound SYSPROG Variables
RSYS: System Dump Data Sets Information

The RSYS EXEC retrieves information on all the system dump data sets.

An example of the use of the RSYS EXEC is given in the MSU005C EXEC.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RSYS) WAIT(YES)

There are no RSYS input parameters.

Following is a list of return codes from RSYS:

Return Code Description

4 Task is not enabled

8 Security failure

Table 14-36 lists the variables returned by RSYS in the LOCAL POOL.

RTPI: Teleprocessing Input/Output Information

The RTPI EXEC retrieves information on teleprocessing I/O (TP I/O) in the
system. If a parameter is passed, the information returned is only for the
specified resource; otherwise, the information for all TP I/O in the system is
returned.

Table 14-36 Variables Returned by RSYS in the LOCAL POOL

Variable Name Type Description

rsysd(xxx) Data Day of month data set was filled

rsysn(xxx) Data Name of full dump data set

rsysrol1 Control Number of output lines

rsyst(xxx) Data Time data set was filled

rsysg(xxx) Data Date of dump in MMM DD YYYY format

rsysi(xxx) Data Title of the dump

rsyss(xxx) Data Source of the dump
BMC Software, Inc., Confidential and Proprietary Information

14-30 MAINVIEW AutoOPERATOR Advanced Automation Guide

How to Resolve Compound SYSPROG Variables
The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(RTPI OPTS) WAIT(YES)

Table 14-37 lists the RTPI parameters.

Following is a list of return codes from RTPI:

Return Code Description

0 Request completed successfully

4 No outstanding I/O

8 Security failure

Table 14-38 lists the variables returned by RTPI The following table lists the
variables returned by RTPI. in the LOCAL POOL.

Table 14-37 RTPI Parameters

Parameter Required? Description

opts No UCB or volume serial number

Table 14-38 Variables Returned by RTPI in the LOCAL POOL

Variable Name Type Description

rtpia(xxx) Data Allocations

rtpid(xxx) Data Driver

rtpii(xxx) Data IOQ address

rtpij(xxx) Data Jobname using device

rtpio(xxx) Data Opens

rtpir(xxx) Data Reserves

rtpirol1 Control Number of output lines

rtpiu(xxx) Data UCB of device

rtpiv(xxx) Data VOLSER of device (may be blank)
BMC Software, Inc., Confidential and Proprietary Information

Chapter 14 Using the AutoOPERATOR-Supplied Utility EXECs 14-31

How to Resolve Compound SYSPROG Variables
RTSU: Information about TSO Users

The RTSU EXEC retrieves information on TSO users in the system. If a
parameter is passed, the information returned is only for the specified TSO
user; otherwise, information on all TSO users is returned.

The following statement shows the format of the call from EXEC:

IMFEXEC SELECT EXEC(RTSU OPTS) WAIT(YES)

Table 14-39 lists the RTSU parameters.

Following is a list of return codes from RTSU:

Return Code Description

0 Request completed successfully

4 Specified USER ID not found

8 Security failure

16 Specified USER ID greater than seven characters

Table 14-40 lists the variables returned by RTSU in the LOCAL POOL.

Table 14-39 RTSU Parameters

Parameter Required? Description

opts No TSO User ID

Table 14-40 Variables Returned by RTSU in the LOCAL POOL

Variable Name Type Description

rtsua(xxx) Data ASID of TSO user

rtsul(xxx) Data TCAM line number (0S for VTAM)

rtsun(xxx) Data Node name used EXEC: N=LOOP CTR T=TSO LINE
COUNTER

rtsurol1 Control Number of output lines

rtsus(xxx) Data System (TCAM OR VTAM)

rtsuu(xxx) Data TSO user ID

rtsuuser Control Number OF TSO users logged on
BMC Software, Inc., Confidential and Proprietary Information

14-32 MAINVIEW AutoOPERATOR Advanced Automation Guide

How to Resolve Compound SYSPROG Variables
@TIMER: Interface to Timer Queues

The @TIMER EXEC provides a common interface to the timer queue
functions.

Purpose

Use the @TIMER EXEC to introduce time-initiated EXECs (also called
timer elements) into AutoOPERATOR. Timer elements are EXECs which are
automatically invoked at user- specified intervals for a user-specified period
of time. As an option, timer elements can also be invoked one at a time. Refer
to the MAINVIEW AutoOPERATOR Basic Automation Guide for more
information about time-initiated EXECs.

Function

Use @TIMER to add or delete timer elements from the system. The specific
function is controlled by the input parameters you use. Table 14-41 lists the
@TIMER parameters.

Deleting a timer element has 2 separate processes. The first issues an
IMFEXEC IMFC PRG=CALLX timername statements where timername is
the name of the timer element to be deleted from the system. The delete is
performed by the AutoOPERATOR interval services task.

The second deletes the PROFILE pool variables that contain the parameters
necessary to invoke and maintain the timer element.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC[@TIMER FUNC(ADD|DEL) PROC(execname) +
 TOD(HH:MM:SS) [or NEXTTIME(MMMM)] INTERVAL(HHcolon.MM:SS) +
 GOODFOR(MMMMM) [or RETAIN(YES|NO)] TARGETSS(subsys ID)
 REPLACE(YES|NO) +
 STOPTIME(HH:MM:SS) DEBUG(YES|NO|TRACE)] WAIT(YES)

All parameters use keywords; the value must be enclosed in parentheses
following the keyword. Table 14-41 lists the @TIMER parameters.
BMC Software, Inc., Confidential and Proprietary Information

Chapter 14 Using the AutoOPERATOR-Supplied Utility EXECs 14-33

How to Resolve Compound SYSPROG Variables
Table 14-41 @TIMER Parameters (Part 1 of 2)

Parameter Required? Description

func Yes Function to perform
Valid values are ADD or DEL(ete).

proc Yes Name of an EXEC to schedule

tod Yes Time at which to schedule the process
A valid time must be entered in Hours:Minutes:Seconds
format (HH:MM:SS). Valid times are 00:00:01 to 24:00:00.

Note: The NEXTTIME and TOD parameters are
mutually exclusive and cannot be used together.

nexttime Yes The amount of time (from current time) to schedule the
process
A valid time must be entered in MMMM format where
MMMM is an up-to 4 digit number.
The NEXTTIME parameter MMMM should not result in a
start time that is greater than 24 hours. Therefore
NEXTTIME should not be greater than 1440.

Note: The NEXTTIME and TOD parameters are
mutually exclusive and cannot be used together.

interval No Repetition interval
Specify a time in HH:MM:SS format that will cause the
function to be repeated at set intervals.
Valid times are 00:00:01 to 24:00:00.

goodfor No The amount of time this timer element is good for
A valid time must be entered in MMMM format where
MMMM is an up-to 4 digit number.
This value is used by the AutoOPERATOR Sample Catch-
Up Solution to determine whether or not this element
should be re-instated after an AutoOPERATOR shutdown.
The GOODFOR time is converted into a time format used
by Catch-Up processing and compared against the
originally scheduled and current times to determine
whether the element should be re-instated.

Note: The GOODFOR and RETAIN parameters are
mutually exclusive and cannot be used together.

retain No Retain for catchup processing
Valid values are YES or NO
When RETAIN(YES) is specified, it is the number of
minutes beyond the time specified in TOD in which catch
up processing will be valid.

Note: The GOODFOR and RETAIN parameters are
mutually exclusive and cannot be used together.

targetss No The subsystem ID (SYSID) of the target for execution

replace No Used on an ADD request to determine whether or not a
request should replace a current timer element of the same
name.
Valid values are YES or NO.
BMC Software, Inc., Confidential and Proprietary Information

14-34 MAINVIEW AutoOPERATOR Advanced Automation Guide

How to Resolve Compound SYSPROG Variables
Processing

When an ADD request is received, @TIMER determines if the timer element
already exists. If the element does not exist, a LIST variable is created to
define and maintain the element. An IMFEXEC IMFC SET REQ=CALLX
command is also built and sent to the interval services task. The interval
services task then prepares the internal control block that defines this request
and the timer element is ready to execute at the specified time.

If the timer element does exist (meaning that the LIST variable is present in
the PROFILE variable pool), @TIMER determines if this element will be
replaced by checking the input parameter REPLACE(). If the element is to be
replaced, @TIMER determines if the element is pending delete (another
request has already started the delete process) and if not, issues the command
to delete the element to the interval services task.

If a delete is pending, an SOL230E message is issued and @TIMER waits up
to 5 minutes for the delete to finish. After 5 minutes, if the pending delete has
not taken place, an SOL242E message is issued and the add request is
discarded.

If the element is not to be replaced, @TIMER determines whether or not the
element is pending delete by another request. If the element is pending
delete, @TIMER waits 30 seconds for the delete to complete. If that delete
does not occur, an SOL240W message is issued and @TIMER deletes the
timer element list variable and proceeds with the add request.

If the element is not pending delete, an SOL222E message is issued and the
request is discarded.

stoptime No Time to stop scheduling the process:
A valid time must be entered in Hours:Minutes:Seconds
format (HH:MM:SS).
Valid times are 00:00:01 to 24:00:00.

debug No Causes the display of debugging messages to be issued to
the BBI-SS PAS Journal during the execution of @TIMER.
Valid values are YES, NO or TRACE. YES causes
informational messages to be issued by @TIMER in the
format SOLnnnt, NO (default) causes no debugging
messages to be written to the BBI-SS PAS Journal. TRACE
causes the SOLnnnt messages, along with CONTROL
CON SYM and IMFEXEC CNTL LIST trace output to be
written to the BBI-SS PAS Journal.

Table 14-41 @TIMER Parameters (continued) (Part 2 of 2)

Parameter Required? Description
BMC Software, Inc., Confidential and Proprietary Information

Chapter 14 Using the AutoOPERATOR-Supplied Utility EXECs 14-35

How to Resolve Compound SYSPROG Variables
When a timer element delete is initiated, @TIMER first determines if the
timer element exists. If it does exist, @TIMER issues the command to delete
the element to the interval services task, sets the element to pending delete
status and exits. The second process of the delete then takes place as another
invocation of @TIMER deletes the PROFILE variable that defines the timer
element.

If the timer element does not exist, an SOL229E message is issued and
@TIMER exits. If the timer element is pending delete from another request,
an SOL230E messages is issued and @TIMER exits.

Following is a list of return codes from @TIMER:

Return Code Description

0 Request completed successfully

4 Duplicate element found, ADD failed

8 Element not found, DELETE failed

16 Parameter error; refer to error message for further clarification

JES2DI: Retrieve Initiator Information

The JES2DI EXEC can be used to retrieve information on JES2 initiators.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(JES2DI 1 10) WAIT(YES)

Table 14-42 lists the JES2DI parameters.

Table 14-42 JES2DI Parameters

Parameter Required? Description

binit No Beginning initiator number for the display

einit No Ending initiator number for the display
BMC Software, Inc., Confidential and Proprietary Information

14-36 MAINVIEW AutoOPERATOR Advanced Automation Guide

How to Resolve Compound SYSPROG Variables
Following is a list of return codes from JES2DI:

Return Code Description

0 Request completed successfully

8 Parameter errors

12 Command not completed because it timed out

Table 14-43 lists the variables returned by JES2DI in the LOCAL POOL.

JES2DQ: Retrieve Execution Queue Information

Use the JES2DQ EXEC to retrieve information on JES2’s execution queues.

The following statement shows the format of the call from EXEC:

IMFEXEC SELECT EXEC(JES2DQ) WAIT(YES)

There are no input parameters to JES2DQ.

Following is a list of the return codes from JES2DQL:

Return Code Description

0 Request completed successfully

12 Command not completed because it timed out

Table 14-44 lists the variables returned by JES2DQ.

Table 14-43 Variables Returned by JES2DI in the LOCAL POOL

Variable Name Type Description

jes2nol Control Number of output lines

j2dinm(xx) Data Initiator number

j2dist(xx) Data Status of the init

j2dijnm(xx) Data Currently executing job number

j2dicls(xx) Data Assigned classes
BMC Software, Inc., Confidential and Proprietary Information

Chapter 14 Using the AutoOPERATOR-Supplied Utility EXECs 14-37

How to Resolve Compound SYSPROG Variables
CNVSECS: Convert HH:MM:SS Format to Seconds

Use the CNVSECS EXEC convert time in the HH:MM:SS format to seconds.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(CNVSECS TIMEIN) WAIT(YES)

Table 14-45 lists the CNVSECS parameters.

Following is a list of return codes from CNVSECS:

Return Code Description

0 Request completed successfully

8 Input parameter not in HH:MM:SS format

12 Input parameter not specified

Table 14-46 lists the variables returned by CNVSECS in the LOCAL POOL.

Table 14-44 Variables Returned by JES2DQ in the LOCAL POOL

Variable Type Description

jes2nol Control Number of output lines

j2dqjnb(xx) Data Number of jobs in queue

j2dqcls(xx) Data Class for this queue

j2dqsys(xx) Data SYSID for this queue

Table 14-45 CNVSECS Parameters

Parameter Required? Description

timein Yes Time in HH:MM:SS format

Table 14-46 Variables Returned by CNVSECS in the LOCAL POOL

Variable Type Description

secsout Data Output time in seconds
BMC Software, Inc., Confidential and Proprietary Information

14-38 MAINVIEW AutoOPERATOR Advanced Automation Guide

How to Resolve Compound SYSPROG Variables
CNVTIME: Convert Time in Seconds to HH:MM:SS

Use the CNVTIME EXEC to convert time in seconds to HH:MM:SS format.

The following statement shows the format of the call from the EXEC:

IMFEXEC SELECT EXEC(CNVTIME SECSIN) WAIT(YES)

Table 14-47 lists the CNVTIME parameters.

Following is a list of return codes from CNVTIME:

Return Code Description

0 Request completed successfully

12 Input parameter not specified

Table 14-48 lists the variables returned by CNVTIME in the LOCAL POOL.

Table 14-47 CNVTIME Parameters

Parameter Required? Description

secsin Yes Time in seconds

Table 14-48 Variables Returned by CNVTIME in the LOCAL POOL

Variable Type Description

timeout Data Output time in HH:MM:SS format

cnvtday Data Number of days the output goes past the day
boundary
BMC Software, Inc., Confidential and Proprietary Information

Chapter 14 Using the AutoOPERATOR-Supplied Utility EXECs 14-39

How to Resolve Compound SYSPROG Variables
QAODUMP: Submits Commands to Obtain a Console Dump

This EXEC is invoked by

• a Rule
• other EXECs
• the operator from the BBI Journal
• a MVS console
• or by SDSF

Purpose

Use the QAODUMP EXEC to obtain a console dump of the MAINVIEW
AutoOPERATOR address space, a single specified address space, multiple
specified address spaces, or a TSO user address space.

Initiation

The following statement shows the format of the call from an EXEC:

"IMFEXEC SELECT EXEC(QAODUMP) WAIT(YES/NO)"

Use the following format for a console-initiated request:

%QAODUMP

If no parameters are specified, by default QAODUMP will obtain a console
dump of the AutoOPERATOR address space and will use SDATA parameters
of CSA, RGN, TRT, and GRSQ.

Note: If QAODUMP is scheduled from a Rule, you must ensure that the
system is protected from too many dumps being taken at once. To
ensure this protection, code and appropriate criteria match rate for
the Rule.

The following table lists the QAODUMP parameters.

Table 14-49 QAODUMP Parameters (Part 1 of 2)

Parameter Required Description

HELP NO Lists help information about QAODUMP.
Lists all parameters and their descriptions.

IMS NO Takes a console dump of the AutoOPERATOR address space
and the associated IMS region. It uses the default SDATA of
CSA, RGN, TRT and GRSQ.
BMC Software, Inc., Confidential and Proprietary Information

14-40 MAINVIEW AutoOPERATOR Advanced Automation Guide

How to Resolve Compound SYSPROG Variables
A list of the return codes for QAODUMP follows:

JOBNAME(name) NO Overrides the JOBNAME default with the provided name and
uses the default SDATA.

JOBNAME(name1,name2) NO Overrides the JOBNAME default with the job names specified in
name1 and name2 and uses the default SDATA.

SDATA(LPA,CSA,RGN) NO Uses the JOBNAME default and overrides the default SDATA.

JOBNAME(name1,name2)
SDATA(LPA,CSA,RGN)

NO Overrides the JOBNAME defaults and SDATA with the
specified job names and SDATA.

ASID(xx,yy,zz) NO Overrides the JOBNAME default with the specified hex ASID
numbers, and uses the default SDATA.

ASID(xx,yy,zz)
SDATA(LPA,CSA,RGN)

NO Overrides the JOBNAME default with the specified hex ASID
list and uses SDATA values.

TSONAME(name) NO Overrides the JOBNAME default with the specified user
identifier of a TSO user.

TSONAME(name)
JOBNAME(name1)

NO Overrides the JOBNAME default with the specified TSO
address space name and job name, and uses the default
SDATA.

Return Code Description

0 Requested dump was successfully taken.

4 HELP information was requested.

12 QAODUMP dump is not complete; QIMSNAME variable is null.
IEE094D was not returned from the DUMP command.
QAODUMP dump is not complete; specified parameters are invalid.
Command failed (see Table 9-3 on page 20 for explanation).

Table 14-49 QAODUMP Parameters (Part 2 of 2)

Parameter Required Description
BMC Software, Inc., Confidential and Proprietary Information

Chapter 14 Using the AutoOPERATOR-Supplied Utility EXECs 14-41

How to Resolve Compound SYSPROG Variables
BMC Software, Inc., Confidential and Proprietary Information

14-42 MAINVIEW AutoOPERATOR Advanced Automation Guide

8

Appendix A SYSPROG EXEC Cross-
Reference

Table A-1 cross-references the SYSPROG service EXECs and variables. The
table is sorted alphabetically by the SYSPROG service field name in the first
column.

To use the table, review the left column to find the type of SYSPROG service
EXEC information you need. For each SYSPROG service field, there is a
description of the EXEC variable and the EXEC variable name.

The first four positions of the variable name indicate the EXEC name. For
example, the first variable listed, RMDEA(XXX) is used in the utility EXEC
RMDE. Refer to RMDE EXEC for a full set of services available and the
RMDEA(XXX) variable.

Table A-1 SYSPROG Service EXEC and Variable Cross-Reference (Part 1 of 7)

SYSPROG Service Name EXEC Variable Description Variable Name

acyl Determine I/O System Bottlenecks rmdea(xxx)

address of vector table Storage/Paging/Slots rasmvta

address space id Return Status of Task(s) rstaa(xxx)

address space start time Progress Report on Task rprost

allocations Virtual Storage Address Space rioal(xxx)

allocations Interface to SYSPROG service TPIO rtpia(xxx)

asid of task Virtual Storage Address Space rcssa(xxx)

asid of task Basic Real Storage Information rrsma(xxx)

asid of tso user TSO User System Information rtsua(xxx)

available frames(free) Basic Real Storage Information rrsmafrm
BMC Software, Inc., Confidential and Proprietary Information

Appendix A SYSPROG EXEC Cross-Reference A-1

available slots Storage/Paging/Slots rasmslav

burst Storage/Paging/Slots rasmb(xxx)

channel path Monitor Channel Path rmpap(xxx)

common fixed frames Basic Real Storage Information rrsmcffr

common frames Basic Real Storage Information rrsmcfrm

connect time Determine I/O System Bottlenecks rmdec(xxx)

cpu accumulated in last 30 seconds Monitor Address Space rmoncpa

cpu limit Progress Report on Task rprolcpu

cpu number CPU/TSO/MVS Overhead rcpuc(xx)

cpu % busy CPU/TSO/MVS Overhead rcpub(xx)

cpu time used Return Status of Task(s) rstac(xxx)

csa paging rate Paging/Demand Paging Information rpagcsa

csa used above the 16m line Virtual Storage Address Space rcsse(xxx)

csa used below the 16m line Virtual Storage Address Space rcssd(xxx)

current condition SYSPROG service RESERVE Interface rresc(xxx)

current step number Progress Report on Task rprocs

currently executing step Progress Report on Task rprostep

date data set was filled Interface to SYSDUMP Service rsysd(xxx)

decimal version Progress Report on Task rprodpty

demand paging rate Paging/Demand Paging Information rpagdmnd

device busy Determine I/O System Bottlenecks rmdeb(xxx)

device ucb address Determine I/O System Bottlenecks rmdeu(xxx)

disconnect time Determine I/O System Bottlenecks rmded(xxx)

dispatching priority CPU/TSO/MVS Overhead rcpud(xx)

dispatching priority Progress Report on Task rproprty

dispatching queue Return Status of Task(s) rstaq(xxx)

driver Find ALL Outstanding Non-TP I/O riodv(xxx)

driver Interface to SYSPROG service TPIO rtpid(xxx)

elapsed time since ctrs last cleared Paging/Demand Paging Information rpagtime

excps accumulated in last 30
seconds

Monitor Address Space rmonexa

first 12 words of message SYSPROG service REPLIES Interface rrep1(xxx) through
RREP9(XXX)

first 12 words of message SYSPROG service REPLIES Interface rrep1.x.1-12

fixed below 16mb line Basic Real Storage Information rrsmb(xxx)

Table A-1 SYSPROG Service EXEC and Variable Cross-Reference (continued) (Part 2 of 7)

SYSPROG Service Name EXEC Variable Description Variable Name
BMC Software, Inc., Confidential and Proprietary Information

A-2 MAINVIEW AutoOPERATOR Advanced Automation Guide

fixed frames Basic Real Storage Information rrsmffrm

fixed frames below 16mb line Basic Real Storage Information rrsmb16m

fixed storage frames Basic Real Storage Information rrsmf(xxx)

free slots Storage/Paging/Slots rasmb(xxx)

ioq address Find ALL Outstanding Non-TP I/O rioia(xxx)

ioq address Interface to SYSPROG service TPIO rtpii(xxx)

ipl type Storage/Paging/Slots rasmiplt

jes number of task that issued wtor SYSPROG service REPLIES Interface rrepn(xxx)

jes number of task that issued wtor SYSPROG service REPLIES Interface rrepn.x

jes2 job number Progress Report on Task rpronumb

job class Progress Report on Task rprocl

jobname Storage/Paging/Slots rasmj(xxx)

jobname Find ALL Outstanding Non-TP I/O riojn(xxx)

jobname Progress Report on Task rproname

jobname that requested mount Tape or DASD Mount Requests rmptj(xxx)

jobname using device Interface to SYSPROG service TPIO rtpij(xxx)

jobname with possible reserve SYSPROG service service RESERVE Interface rresj(xxx)

label of volume Storage/Paging/Slots rasml(xxx)

largest slot user Storage/Paging/Slots rasmsusrx

lpa paging rate Paging/Demand Paging Information rpaglpa

lsqa frames Basic Real Storage Information rrsml(xxx)

major name of reserve SYSPROG service service RESERVE Interface rresm(xxx)

message class Progress Report on Task rpromsgc

message level Progress Report on Task rpromsgl

minor name of reserve SYSPROG service RESERVE Interface rresn(xxx)

name of full dump data set Interface to SYSDUMP Service rsysn(xxx)

name of job CPU/TSO/MVS Overhead rcpun(xx)

name of task Virtual Storage Address Space rcssn(xxx)

name of task Basic Real Storage Information rrsmn(xxx)

name of task Return Status of Task(s) rstan(xxx)

node name exec n=loop ctr t=tso
line ctr

TSO User Information rtsun(xxx)

non-vio slots Storage/Paging/Slots rasmn(xxx)

nucleus frames Basic Real Storage Information rrsmnfrm

number of cpu related output groups CPU/TSO/MVS Overhead rcpurol3

Table A-1 SYSPROG Service EXEC and Variable Cross-Reference (continued) (Part 3 of 7)

SYSPROG Service Name EXEC Variable Description Variable Name
BMC Software, Inc., Confidential and Proprietary Information

Appendix A SYSPROG EXEC Cross-Reference A-3

number/job related output variable
grps

CPU/TSO/MVS Overhead rcpurol2

number of output lines Monitor Channel Path rmparol1

number of output groups Virtual Storage Address Space rcssrol1

number of output lines Find ALL Outstanding Non-TP I/O riorol1

number of output lines Determine I/O System Bottlenecks rmderol1

number of output lines SYSPROG service REPLIES Interface rreprol1

number of output lines Interface to SYSDUMP Service rsysrol1

number of output lines Interface to SYSPROG service TPIO rtpirol1

number of output lines TSO User System Information rtsurol1

number of sysprog service output
lines

Storage/Paging/Slots rasmrol1

number of tso users logged on TSO User System Information rtsuuser

online frames Basic Real Storage Information rrsmofrm

opens Find ALL Outstanding Non-TP I/O rioop(xxx)

opens Interface to SYSPROG service TPIO rtpio(xxx)

page reclaim rate Paging/Demand Paging Information rpagrclm

pages accumulated in last 30
seconds

Monitor Address Space rmonpaa

paging device Find ALL Outstanding Non-TP I/O riopd(xxx)

pend time Determine I/O System Bottlenecks rmdep(xxx)

percent busy Monitor Channel Path rmpab(xxx)

percentage available Storage/Paging/Slots rasmslpc

percentage cpu used Progress Report on Task rpropcpu

percentage free Storage/Paging/Slots rasmp(xxx)

percentage largest user is holding Storage/Paging/Slots rasmv(xxx)

percentage of cpu used by batch CPU/TSO/MVS Overhead rcpubatp

percentage of cpu in mvsoverhead CPU/TSO/MVS Overhead rcpumvsp

percentage of cpu used by tso CPU/TSO/MVS Overhead rcputsop

percentage of cpu CPU/TSO/MVS Overhead rcpuu(xx)

percentage of online frames
allocated

Basic Real Storage Information rrsmp(xxx)

performance group Monitor Address Space rmonpg

performance group Progress Report on Task rpropg

performance group Return Status of Task(s) rstag(xxx)

performance period Monitor Address Space rmonpp

Table A-1 SYSPROG Service EXEC and Variable Cross-Reference (continued) (Part 4 of 7)

SYSPROG Service Name EXEC Variable Description Variable Name
BMC Software, Inc., Confidential and Proprietary Information

A-4 MAINVIEW AutoOPERATOR Advanced Automation Guide

performance period Progress Report on Task rpropp

performance period Return Status of Task(s) rstap(xxx)

priority CPU/TSO/MVS Overhead rcpup(xx)

priority in apg range notation Monitor Address Space rmondp

priority in decimal Monitor Address Space rmonhp

private fixed frames Basic Real Storage Information rrsmpffr

private frames Basic Real Storage Information rrsmpfrm

program name Progress Report on Task rpropgm

programmer name Progress Report on Task rpropgnm

q length Determine I/O System Bottlenecks rmdeq(xxx)

rate Determine I/O System Bottlenecks rmder(xxx)

real frame count Return Status of Task(s) rstaf(xxx)

region requested Progress Report on Task rprorr

region used Progress Report on Task rproru

reply number SYSPROG service REPLIES Interface rrepi(xxx)

reply number SYSPROG service REPLIES Interface rrepi.x

reserves Find ALL Outstanding Non-TP I/O riorv(xxx)

reserves Interface to SYSPROG service TPIO rtpir(xxx)

seconds of cpu used by batch CPU/TSO/MVS Overhead rcpubatt

seconds of cpu in mvs overhead CPU/TSO/MVS Overhead rcpumsvo

seconds of cpu used CPU/TSO/MVS Overhead rcpus(xx)

seconds of cpu used by tso CPU/TSO/MVS Overhead rcputsot

seek Determine I/O System Bottlenecks rmdes(xxx)

service unit accumm in last 30 sec. Monitor Address Space rmonsua

size of data set in slots Storage/Paging/Slots rasms(xxx)

sqa fixed frames Basic Real Storage Information rrsmsffr

sqa used above the 16m line Virtual Storage Address Space rcssc(xxx)

sqa used below the 16m line Virtual Storage Address Space rcssb(xxx)

srb time used(step) Progress Report on Task rprosrb

start line number of page d/s
information

Storage/Paging/Slots rasmrol2

start line number of map information Storage/Paging/Slots rasmrol3

status of reserve SYSPROG service RESERVE Interface rress(xxx)

status 1(nsw ls pvl out goi gob enq in
goo)

Status of Task(s) rsta1(xxx)

Table A-1 SYSPROG Service EXEC and Variable Cross-Reference (continued) (Part 5 of 7)

SYSPROG Service Name EXEC Variable Description Variable Name
BMC Software, Inc., Confidential and Proprietary Information

Appendix A SYSPROG EXEC Cross-Reference A-5

status 2(ls ms lw cp) Status of Task(s) rsta2(xxx)

step name Monitor Address Space rmonsn

step start time Progress Report on Task rpross

step total cpu Progress Report on Task rproscpu

storage frames Basic Real Storage Information rrsms(xxx)

swap paging rate Paging/Demand Paging Information rpagswap

system(tcam or vtam) TSO User System Information rtsus(xxx)

SYSTEM ID The system ID of the issuer, x = line number RREPS.X

task name Monitor Address Space rmonjn

task number Monitor Address Space rmonnu

task type (tsu stc job) Monitor Address Space rmontt

tcam line number(0s for vtam) TSO User System Information rtsul(xxx)

tcb time used(step) Progress Report on Task rprotcb

time data set was filled Interface to SYSDUMP Service rsyst(xxx)

total cpu used Monitor Address Space rmoncpt

total csa used Virtual Storage Address Space rcssg(xxx)

total excps Monitor Address Space rmonext

total number of output lines CPU/TSO/MVS Overhead rcpurol1

total pages Monitor Address Space rmonpat

total paging rate Paging/Demand Paging Information rpagrate

total service units Monitor Address Space rmonsut

total slots Storage/Paging/Slots rasmtlsl

total sqa used Virtual Storage Address Space rcssf(xxx)

total steps Progress Report on Task rprots

tso userid TSO User System Information rtsuu(xxx)

type of job(stc bat tsu) CPU/TSO/MVS Overhead rcput(xx)

type of job(stc tso job) Progress Report on Task rprotype

type of page data set Storage/Paging/Slots rasmt(xxx)

type of reserve SYSPROG service RESERVE Interface rrest(xxx)

type of unit Tape or DASD Mount Requests rmptt(xxx)

type/task issuing wtor(stc tsu job) SYSPROG service REPLIES Interface rrept(xxx)

type/task issuing wtor(stc tsu job) SYSPROG service REPLIES Interface rrept.x

ucb of device SYSPROG service RESERVE Interface rresu(xxx)

ucb of device Interface to SYSPROG service TPIO rtpiu(xxx)

unit address Find ALL Outstanding Non-TP I/O rioua(xxx)

Table A-1 SYSPROG Service EXEC and Variable Cross-Reference (continued) (Part 6 of 7)

SYSPROG Service Name EXEC Variable Description Variable Name
BMC Software, Inc., Confidential and Proprietary Information

A-6 MAINVIEW AutoOPERATOR Advanced Automation Guide

unit address of page data set Storage/Paging/Slots rasmu(xxx)

unit address of mount Tape or DASD Mount Requests rmptu(xxx)

vio paging rate Paging/Demand Paging Information rpagvio

vio slots Storage/Paging/Slots rasmuspc

virtual used above line Progress Report on Task rprovua

virtual used below line Progress Report on Task rprovub

volser of device SYSPROG service RESERVE Interface rresv(xxx)

volser of device(may be blank Interface to SYSPROG service TPIO rtpiv(xxx)

volser of requested volume Tape or DASD Mount Requests rmptv(xxx)

volume serial Find ALL Outstanding Non-TP I/O riovs(xxx)

volume serial Determine I/O System Bottlenecks rmdev(xxx)

working set size Basic Real Storage Information rrsmw(xxx)

working set size Return Status of Task(s) rstaw(xxx)

Table A-1 SYSPROG Service EXEC and Variable Cross-Reference (continued) (Part 7 of 7)

SYSPROG Service Name EXEC Variable Description Variable Name
BMC Software, Inc., Confidential and Proprietary Information

Appendix A SYSPROG EXEC Cross-Reference A-7

BMC Software, Inc., Confidential and Proprietary Information

A-8 MAINVIEW AutoOPERATOR Advanced Automation Guide

6

Appendix B Using CLIST
Conventions and Syntax
in AutoOPERATOR
CLIST EXECs

This chapter describes statements and variables you can use for a CLIST
EXEC. For more complete information about writing CLISTs in general,
refer to the IBM manuals:

OS/VS2 TSO Command Language Reference Manual
TSO/E: CLISTS

Using Expressions and Operators in CLIST EXECs

All of the arithmetic, comparative, and logical operators described in the
IBM publication OS/VS2 TSO Command Language Reference Manual are
valid in an EXEC expression running within AutoOPERATOR. An
expression combines variables, whole numbers, and character strings with
operators. For example, the EXEC statement:

IF &CMD=&SUBSTR(1:2,&Z1) THEN ...

uses the comparative operator = in an expression with the TSO IF conditional
statement to compare the first two characters of the character string in the
&Z1 symbolic variable to the value in the &CMD symbolic variable.

The symbolic &SUBSTR is a TSO built-in function that replaces &SUBSTR
with specific characters from a character string. The actual characters are
selected by specifying a numeric range enclosed in parentheses (start-
expression:end-expression) for the portion of the character string to be used.
BMC Software, Inc., Confidential and Proprietary Information

Appendix B Using CLIST Conventions and Syntax in AutoOPERATOR CLIST EXECs B-1

Using Control Statements in CLIST EXECs
In this example, &SUBSTR is replaced with the first two characters of the
character string substituted for the &Z1 symbolic variable.

Using Control Statements in CLIST EXECs

AutoOPERATOR EXECs support the following TSO control statements.

Statement Description

PROC Defines the parameters to be passed to the EXEC as described in
“Passing Data” on page 3-2.

GOTO Causes an unconditional branch.

EXIT Returns control to the routine that called the EXEC if IBM PTF
UZ45719 is applied. If the PTF is not applied, the EXIT statement
causes the EXEC to fail and the following error message to be
generated:

EM0022E ERROR PROCESSING ..execname.. ERROR IN EXEC

where execname is the name of the EXEC that failed.

Note: As a convention, EXIT should be used at the end of an EXEC.

Using Assignment Statements in CLIST EXECs

AutoOPERATOR EXECs support the following TSO assignment statements.

Statement Description

SET Assigns values to symbolic variables.

READDVAL Builds a parameter list from &SYSDVAL.
BMC Software, Inc., Confidential and Proprietary Information

B-2 MAINVIEW AutoOPERATOR Advanced Automation Guide

Using Conditional Statements in CLIST EXECs
Using Conditional Statements in CLIST EXECs

AutoOPERATOR EXECs support the following TSO conditional statements.

Statement Description

DO-WHILE-END Executes a set of related instructions only while a specific condition exists.

DO Starts a DO group

END Ends a DO group

WHILE Controls a DO loop

IF-THEN-ELSE Executes a set of related instructions under true or false conditions.

F Tests IF condition

THEN Starts a true action

ELSE Starts a false action

Using Built-in Functions in CLIST EXECs

Built-in functions are functions you can perform on variables, expressions,
and character strings. The result is stored under the built-in variable name.

Note: The descriptions for this section are from the IBM publication,
TSO/E: CLISTS, Chapter 6, “Using Built-in Functions”.

AutoOPERATOR EXECs also support the following predefined built-in local
variables.

Variable Description

&DATATYPE(expression) Determines if the expression is numeric or character.

&EVAL(expression) Determines the result of an arithmetic expression.

&LENGTH(expression) Determines the number of characters in the result of an expression.

&NRSTR(string) Preserves double ampersands, defines nonscannable strings.

&STR(string) Uses a string of characters to replace &STR.

&SUBSTR(exp[:exp],string) Uses a portion of a character string to replace &SUBSTR.

&SYSCAPS(string) Converts the string to upper case characters.
BMC Software, Inc., Confidential and Proprietary Information

Appendix B Using CLIST Conventions and Syntax in AutoOPERATOR CLIST EXECs B-3

TSO Command Restrictions for CLIST EXECs
TSO Command Restrictions for CLIST EXECs

AutoOPERATOR CLIST EXECs do not support these TSO commands:

• ACCOUNT

— ALTFILE option of ALLOCATE command
— CANCEL
— DISPLAY
— EDIT
— EXEC
— HELP
— LISTALC
— LISTBC
— LISTCT
— LISTLDX
— LOADGO
— LOGOFF
— LOGON
— MONITOR
— OPERATOR
— OUTPUT
— PROFILE
— PROTECT
— RENAME
— RUN
— SLIP
— STATUS
— STOPMN
— SUBMIT
— TERMINAL
— TEST

&SYSDSN(dsname[(member)]) Indicates whether or not the specified data set exits.

&SYSINDEX(string1,string2 [,start]) Finds the position of a character string (string1) within another
(string2), from a specific starting point.

&SYSLC(string) Converts the string to lowercase characters.

&SYSNSUB(level,expression) Limits the level of symbolic substitution in the expression.

&SYSONEBYTE(string) Converts a string of data from the double-byte character set (DBCS)
to EBCDIC.

&SYSTWOBYTE(string) Converts a string of data from EBCDIC to the double-byte character
set (DBCS).

Variable Description
BMC Software, Inc., Confidential and Proprietary Information

B-4 MAINVIEW AutoOPERATOR Advanced Automation Guide

TSO Command Restrictions for CLIST EXECs
AutoOPERATOR EXECs do not support these TSO command procedure
statements:

• DATA(-ENDDATA)

— GLOBAL
— READ
— TERMIN
— WRITENR

AutoOPERATOR EXECs do not support using the TSO/E CALL or TSO/E
Service Facility (IKJEFFTSR) to give control to an authorized program.
BMC Software, Inc., Confidential and Proprietary Information

Appendix B Using CLIST Conventions and Syntax in AutoOPERATOR CLIST EXECs B-5

TSO Command Restrictions for CLIST EXECs
BMC Software, Inc., Confidential and Proprietary Information

B-6 MAINVIEW AutoOPERATOR Advanced Automation Guide

28
Appendix C Passing Parameters to
CLIST EXECs in
AutoOPERATOR

This chapter describes:

• The four components of a CLIST EXEC

• The differences in the ways parameters are passed based on how an
AutoOPERATOR CLIST EXEC is invoked

Understanding the Four Components of a CLIST
EXEC

This section briefly describes the four components of CLIST EXECs. There
are four steps to writing CLIST EXECs:

• Defining the language

All EXECs are assumed to be CLIST EXECs unless the first statement
identifies the EXEC as a REXX EXEC. For information about writing
REXX EXECs, refer to the IBM publication TSO/E: REXX/MVS User’s
Guide.

• Passing data

You must include a statement—called the PROC statement—that defines
the input parameters to be used by the EXEC logic.

• Documenting the EXEC
BMC Software, Inc., Confidential and Proprietary Information

Appendix C Passing Parameters to CLIST EXECs in AutoOPERATOR C-1

Understanding the Four Components of a CLIST EXEC
You can include comments, enclosed by /* and */, throughout the EXEC
to describe the purpose of the EXEC statements This is optional but
highly recommended.

• Writing the logic

A logic section that contains TSO CLIST statements and commands, and
AutoOPERATOR IMFEXEC commands that perform user-defined
automation tasks. Use the IMFEXEC commands to specify the
automation actions and commands you want the EXECs to perform.

Each of these parts is described in the following sections.

Defining the Language

The TSO/E processor assumes that it is executing a CLIST EXEC unless the
first statement it encounters (the PROC statement) defines the EXEC as a
REXX EXEC. For example, if

 PROC 3 EXEC1 VAR1 VAR2

is the first statement of an EXEC, then the EXEC is processed as a CLIST
EXEC.

If the first statement looks like

/* REXX EXEC */

the EXEC is processed as a REXX EXEC.

Passing Data

The CLIST EXEC receives data to perform its task through the PROC
statement. AutoOPERATOR uses these parameters to pass values to an
EXEC when the EXEC is invoked.

The information passed through the PROC statements varies, depending on
the way the EXEC is invoked. For example, an EXEC can be invoked by a
Rule or by a user and the values passed to the EXEC for these two methods
are different.

The PROC statement syntax is:

PROC parmnum [P1 P2 P3 ... Pn]
BMC Software, Inc., Confidential and Proprietary Information

C-2 MAINVIEW AutoOPERATOR Advanced Automation Guide

Understanding the Four Components of a CLIST EXEC
where:

parmnum Is the total number of positional parameters on the PROC
statement. The maximum is 99.

The maximum length of the parameter list when running
under TSO/E V2 is 255 characters; the maximum when
running under TSO/E V1 is 200.

P1 P2 P3...Pn Are symbolic names you can choose for positional parameters. The
first character must be alphabetic.

If the PROC statement receives more values than parameters
defined, the remaining values are ignored. If fewer values are
received, the extra parameters are filled in by
AutoOPERATOR with a dummy value of a “.” (period). It is
not necessary to use each symbolic parameter in the logic
section of the EXEC.

You can use any 1-32 alphanumeric character string to name a positional
parameter but the first character must be alphabetic. AutoOPERATOR uses
the positional parameters to pass values to an EXEC when the EXEC is
invoked.

For example, you can code the following PROC statement:

PROC 3 MSGID WORD1 WORD2

where:

MSGID Is a name you might use as a symbolic parameter to denote that the
first positional parameter is the ID of a message

WORD1 Is a word you might use as a symbolic parameter to denote the first
word of the message

WORD2 Is a word you might use as a symbolic parameter to denote the
second word of the message

In AutoOPERATOR, EXECs can be invoked in seven ways and the
information (or input) passed to the PROC statement varies depending on
how EXEC is invoked. The input passed to the positional parameters can be
different if an EXEC is invoked by a Rule (Rule-initiated EXECs) or by a
user (user-initiated EXECs).

Following is an example PROC statement for an EXEC named PAYROLL
which starts or stops a payroll application when a user schedules the EXEC:

PROC 2 PAYROLL P1
BMC Software, Inc., Confidential and Proprietary Information

Appendix C Passing Parameters to CLIST EXECs in AutoOPERATOR C-3

Understanding the Four Components of a CLIST EXEC
To invoke the EXEC, enter its name (PAYROLL) and the parameter value
(START or STOP) on the COMMAND line of any AutoOPERATOR panel.
AutoOPERATOR searches BBPROC and executes the EXEC when it finds a
member named PAYROLL. It passes a START or STOP value to the PROC
P1 positional parameter, and passes the EXEC name, PAYROLL, as the first
positional parameter in the variable named PAYROLL.

You also can use the EXEC Manager application to schedule a user-initiated
EXEC. Refer to the MAINVIEW AutoOPERATOR Basic Automation Guide
for more information on using the EXEC Manager application.

The following table lists where you can find complete discussions of each
type of CLIST EXEC and the parameters that are passed to them.

Documenting CLIST EXECs

As discussed in “Passing Data” on page C-2, the PROC statement identifies
the parameters that the subsequent IMFEXEC commands and EXEC
statements process.

Following the PROC statement, you should have a section that uses comment
statements to describe the symbolic parameters. A comment statement looks
like the following example:

/* This is an example of a comment in an EXEC */

This comment section is optional but highly recommended because it
provides consistency and helps other system administrators, analysts, or
operators who use or maintain the EXEC. The comment section explains the
purpose of the EXEC and the expected values to be passed to each symbolic
parameter defined by the PROC statement.

Figure C-1 shows an example of the PROC statement and comment section
for a user-initiated CLIST EXEC named PAYROLL.

To read about See page

Rule-initiated EXECs 7

ALERT-initiated EXECs 10

User-initiated EXECs 15

Time-initiated EXECs 17

EXEC-initiated EXECs 21

Externally initiated EXECs 23

End-of-Memory–initiated EXECs 25
BMC Software, Inc., Confidential and Proprietary Information

C-4 MAINVIEW AutoOPERATOR Advanced Automation Guide

Understanding the Four Components of a CLIST EXEC
Figure C-1 Sample Comment Section for a CLIST EXEC
PROC 2 PAYROLL P1

 /*--*/
 /* DOC GROUP (MVS) */
 /* DOC FUNC (PAYROLL) */
 /* DOC CODE (PY) */
 /* DOC DESC (Start/Stop PAYROLL Application) */
 /* DOC AUTHOR (JAC) */
 /*--*/
 /* EXEC Description: This sample EXEC, named PAYROLL, starts or */
 /* stops the payroll application when the EXEC name, PAYROLL, along */
 /* with a START or STOP parameter, is entered in the command input */
 /* line of an AutoOPERATOR panel */
 /*--*/
 /* Symbolic Parameter Definitions: */
 /* */
 /* EXECNAME The member name for this EXEC in the SYSPROC */
 /* concatenated data set. The value for EXECNAME */
 /* is PAYROLL. */
 /* */
 /* P1 The value for P1 is either START or STOP. */
 /*--

Writing the Logic Section

The logic section of a CLIST EXEC is a combination of programming
elements such as:

Element type For example:

TSO CLIST language statements

CALL, READDVAL, DO-WHILE-END

TSO CLIST Control variables

&LASTCC, &SYSLIST, &SYSDATE

TSO CLIST Built-in functions

&LENGTH(), &SUBSTR(), &SYSCAPS()

AutoOPERATOR variables

QIMFID, QSMFID, QJNLSTA
BMC Software, Inc., Confidential and Proprietary Information

Appendix C Passing Parameters to CLIST EXECs in AutoOPERATOR C-5

Understanding the Four Components of a CLIST EXEC
and AutoOPERATOR IMFEXEC statements that enable you to write
automation procedures. The concept is identical to programming in other
languages such as COBOL and PL/I, except that CLIST EXECs are not
compiled prior to execution.

This chapter describes passing parameters to AutoOPERATOR CLIST
EXECs. For complete information about writing TSO CLISTS, refer to the
IBM publication TSO/E: CLISTS.
BMC Software, Inc., Confidential and Proprietary Information

C-6 MAINVIEW AutoOPERATOR Advanced Automation Guide

Describing AutoOPERATOR CLIST EXECs
Describing AutoOPERATOR CLIST EXECs

The following sections describe the different AutoOPERATOR CLIST
EXECs based on how they can be invoked in AutoOPERATOR and how
information is passed to the PROC statement.

Rule-Initiated CLIST EXECs

An EXEC is Rule-initiated if its name is specified in the EXEC Name/Parms
field of the Rule Processor Action Specification panel of a fired rule.

Refer to the Rule Processor chapters in the MAINVIEW AutoOPERATOR
Basic Automation Guide for more information about writing Rules and how
to write a Rule that schedules an EXEC.

Potential Use

EXECs scheduled by a Rule through the Rule Processor application can
perform automation that cannot be performed by a Rule. For example, a
Rule-initiated EXEC can, based on the text of a message, issue ALERTs,
submit other EXECs, or invoke SYSPROG services. In general, use Rule-
initiated EXECs to perform advanced automation as a result of a message.

Parameters Passed to the EXEC

The individual words of the message that caused a Rule to fire are passed as
input to the EXEC. A word is any character string separated by a blank or a
comma.
BMC Software, Inc., Confidential and Proprietary Information

Appendix C Passing Parameters to CLIST EXECs in AutoOPERATOR C-7

Rule-Initiated CLIST EXECs
Example of input:

The message:

$HASP103 CMFTEXT BAB031

is an example of a message that can cause a Rule to fire. If the Rule has an
EXEC associated with it, then the words of this message are passed as
parameters to the PROC statement of the EXEC.

Specifying Additional Parameters

From the Rule Processor Action Specification panel, you also can specify
additional parameters you want to send to the EXEC. This is done on the
EXEC/Parms field of any Action Specification panel.

Note that the first parameter specified in this field becomes the first
parameter passed to the EXEC. Subsequent parameters are passed to the
EXEC in the order they were entered

This means the message ID and any message text will not be passed to the
EXEC. To have the message ID and any message text passed to the EXEC,
the Rule must use the &IMFTEXT variable.

Example

The following is an example of a Rule-initiated EXEC scheduled by the Rule
handling the $HASP103 message.

Figure C-2 Rule-Initiated CLIST EXEC Example

PROC 4 MSGID SETUP W2 W3
/***/
/* DOC GROUP(MVS) FUNC(JES2) CODE(J2) */
/* DOC DISP(YES) AUTHOR(B&B) */
/* DOC DESC(RESPOND TO $HASP103 AND WRITE MESSAGE TO JOURNAL) */
/***/
IMFEXEC MSG ’JOB &SETUP IS REQUESTING &W2’
EXIT

The positional parameters passed to the PROC statement of the Rule-initiated
EXEC are shown in the following table:
BMC Software, Inc., Confidential and Proprietary Information

C-8 MAINVIEW AutoOPERATOR Advanced Automation Guide

Rule-Initiated CLIST EXECs
Describing the Example

This EXEC issues the IMFEXEC MSG command to write a message to the
BBI-SS PAS Journal that, when all the values from the input are substituted
for the PROC statement parameters, translates into:

JOB CMFTEXT IS REQUESTING BAB031

For information about Rule-initiated EXECs and retrieving information from
MVS multi-line WTOs or IMS multi-segment messages, refer to“Rule-
Initiated EXECs Initiated by MVS Multi-Line or Multi-Segment Messages”
on page 4-29.

Positional
Parameter

Variable
Name

Value
Passed Description of Value Passed

1 MSGID $HASP103 Is the message ID of the message that fired the Rule that
calls this EXEC

2 SETUP CMFTEXT Is the name of the job requesting a tape mount

3 W2 BAB031 Is the volume serial number of the tape to be mounted

4 W3 . Is a dummy value used to fill in for the fourth parameter
that was not passed with the message
BMC Software, Inc., Confidential and Proprietary Information

Appendix C Passing Parameters to CLIST EXECs in AutoOPERATOR C-9

ALERT-Initiated CLIST EXECs
ALERT-Initiated CLIST EXECs

An ALERT-initiated EXEC (also called a follow-up EXEC) is scheduled by a
user from the ALERT Management Facility. When coding the EXEC that
issues the IMFEXEC ALERT command, use the EXEC parameter to specify
the name of the follow-up EXEC.

The EXEC is then scheduled from the ALERT Detail Display panel of the
ALERT Management Facility by entering any value (up to three characters)
in the RSP column of the panel.

Potential Use

When an ALERT appears on the DETAIL display, it may require an
advanced automation response. An ALERT-initiated EXEC can handle such a
response. By entering any value (up to three characters) in the RSP column of
the ALERT Detail panel, you can schedule a follow-up EXEC.

This section describes one possible use for an ALERT-initiated EXEC where
the EXEC logs messages in the BBI-SS PAS Journal.

Parameters Passed to the EXEC

When an ALERT-initiated EXEC is coded, the IMFEXEC ALERT . . .
EXEC(ABC) command can schedule the follow-up EXEC with or without
parameters. In this example, the EXEC name is ABC:

• Without optional parameters:

IMFEXEC ALERT ... EXEC(ABC)

• With optional parameters (x y z):

IMFEXEC ALERT ... EXEC(’ABC x y z’)

To read about Refer to

How to actually invoke the EXEC Chapter 3, the “ALERT Management Facility” in the
MAINVIEW AutoOPERATOR Basic Automation Guide

Coding an ALERT with an associated EXEC chapter 6, “Using the IMFEXEC Command Statements”
in this book
BMC Software, Inc., Confidential and Proprietary Information

C-10 MAINVIEW AutoOPERATOR Advanced Automation Guide

ALERT-Initiated CLIST EXECs
If the EXEC has parameters, you must enclose them in single quote
marks (’ ’) with the EXEC name. If you do not, only the EXEC name
will be passed and the parameters will not be passed.

See the two examples of input on page 11 for more information.

The first positional parameter passed to the ALERT-initiated EXEC is always
the EXEC name. The characters that you enter in the RSP column ALERT
Detail Display to schedule the EXEC are also passed. However, the position
that those characters have depends on whether or not you use optional
parameters.

Example of input without parameters

For example, the user enters:

DEF

in the RSP column of the ALERT DETAIL DISPLAY panel.

Then, the PROC statement receives data passed in the following way:

Example of input with parameters

For example, the user enters:

DEF

in the RSP column of the ALERT DETAIL DISPLAY panel.

Then, the PROC statement receives data passed in the following way:

Positional
parameter Value passed Description of value passed

1 EXEC name Is the name of the EXEC

2 DEF (contents of RSP
column)

Is the (up to) three character string the user enters in the RSP
column of the ALERT DETAIL DISPLAY panel to actually
invoke the ALERT

3 through n Text of the ALERT Are the actual words of the ALERT associated with the
invoked EXEC
BMC Software, Inc., Confidential and Proprietary Information

Appendix C Passing Parameters to CLIST EXECs in AutoOPERATOR C-11

ALERT-Initiated CLIST EXECs
Example 1: ALERT-Initiated EXEC without Optional Parameters

This example shows an IMFEXEC ALERT statement that schedules an
EXEC named SETJOB without any optional parameters:

IMFEXEC ALERT KEYSETUP ’SETUP BAB031 . . . JOB 00395’
EXEC(SETJOB)
 QUEUE(ABC) PRI(INFO)

The ALERT generated by this statement looks like the following example:

RSP TIME IND ORIGIN --
___ 10:15 e SYSB SETUP BAB031 . . . JOB 00395

The user enters OUT (or any up to three-character string) in the RSP column.
The positional parameters passed to the ALERT-initiated EXEC in this
example are defined in the following table.

Positional
parameter Value passed Description of value passed

1 EXEC name Is the name of the EXEC

2 x Is the first parameter passed to the EXEC

3 y Is the second parameter passed to the EXEC

4 z Is the third parameter passed to the EXEC

5 DEF (contents of RSP
column)

Is the (up to) three character string the user enters in the RSP
column of the ALERT DETAIL DISPLAY panel to actually
invoke the ALERT

6 through n Text of the ALERT Are the actual words of the ALERT associated with the
invoked EXEC

Positional
Parameter

Variable
Name

Variable
Passed Description of Variable Passed

1 EXECNAME SETJOB Is the name of the EXEC

2 RSP OUT (contents
of RSP column)

Is the (up to) three-character string the user enters in
the RSP column of the ALERT DETAIL DISPLAY
panel to actually invoke the ALERT

3 ATEXT1 SETUP First word of ALERT text

4 ATEXT2 BAB031 Second word

5 ATEXT3 . Third word

6 ATEXT4 . Fourth word
BMC Software, Inc., Confidential and Proprietary Information

C-12 MAINVIEW AutoOPERATOR Advanced Automation Guide

ALERT-Initiated CLIST EXECs
Figure C-3 ALERT-Initiated CLIST EXEC Example 1

PROC 8 EXECNAME RSP ATEXT1 ATEXT2 ATEXT3 ATEXT4 ATEXT5 ATEXT6 ATEXT7
/***/
/* DOC GROUP(MVS) FUNC(JES2) CODE(J2) DOC DISP(YES) */
/* AUTHOR(B&B) DOC DESC(WRITE MESSAGE FOR SETUP) */
/*---*/
IMFEXEC MSG ’ALERT &EXECNAME IS REQUESTING SETUP FOR JOB &ATEXT7’
EXIT

Describing the Example

This EXEC issues the IMFEXEC MSG command to write a message to the
BBI-SS PAS Journal that, when all the values from the input are substituted
for, translates into:

ALERT SETJOB IS REQUESTING SETUP FOR JOB 00395

Example 2: ALERT-Initiated EXEC with Optional Parameters

This example shows an IMFEXEC ALERT statement that schedules an
EXEC named SETJOB with the optional parameter IMMEDIATE:

IMFEXEC ALERT KEYSETUP ’SETUP BAB031 . . . JOB 00395’ +
 EXEC(’SETJOB IMMEDIATE’)

The ALERT generated by this statement looks like the following example:

RSP TIME IND ORIGIN --
___ 10:15 e SYSB SETUP BAB031 . . . JOB 00395

The user enters OUT (or any up to three-character string) in the RSP column.
The positional parameters passed to the ALERT-initiated EXEC in this
example are defined in the following table.

7 ATEXT5 . Fifth word

8 ATEXT6 JOB Sixth word

9 ATEXT7 00395 Is the last word of the ALERT text
BMC Software, Inc., Confidential and Proprietary Information

Appendix C Passing Parameters to CLIST EXECs in AutoOPERATOR C-13

ALERT-Initiated CLIST EXECs
Figure C-4 ALERT-Initiated CLIST EXEC Example 2

PROC 5 EXECNAME TIME RSP ATEXT1 ATEXT2
/***/
/* DOC GROUP(MVS) FUNC(JES2) CODE(J2) */
/* DOC DISP(YES) AUTHOR(B&B) */
/* DOC DESC(WRITE MESSAGE FOR SETUP & TIME) */
/*---*/
IMFEXEC MSG ’ALERT &EXECNAME IS REQUESTING SETUP AT &TIME FOR &ATEXT2’
EXIT

Describing the Example

This EXEC issues the IMFEXEC MSG command to write a message to the
BBI-SS PAS Journal that, when all the values from the input are substituted
for, translates into:

ALERT SETJOB IS REQUESTING SETUP AT IMMEDIATE FOR JOB 00395

Table C-1 Example of ALERT-Initiated EXEC Parameters and Variables

Positional
Parameter

Variable
Name

Variable
Value Description of Variable Value

1 EXECNAME SETJOB Is the name of the EXEC

2 TIME IMMEDIATE Is the optional parameter passed to the EXEC to specify
when the job should be run

3 RSP OUT (contents
of RSP
column)

Is the (up to) three-character string the user enters in the
RSP column of the ALERT DETAIL DISPLAY panel to
actually invoke the ALERT

4 ATEXT1 SETUP First word of ALERT text

5 ATEXT2 BAB031 Second word of ALERT text
BMC Software, Inc., Confidential and Proprietary Information

C-14 MAINVIEW AutoOPERATOR Advanced Automation Guide

User-Initiated CLIST EXECs
User-Initiated CLIST EXECs

A user-initiated EXEC (also known as a command-initiated EXEC) is
scheduled when a user enters the EXEC name from the BBI terminal session
(TS) command line with the command prefix of % or <wptypograph>4.

You also can schedule user-initiated EXEC by issuing a MVS MODIFY
command against a BBI PAS subsystem (BBI-SS PAS); for example:

F SYSB,%EXECB

Finally, you also can use the AutoOPERATOR EXEC Manager application to
issue a user-initiated EXEC. Refer to the MAINVIEW AutoOPERATOR Basic
Automation Guide for more information.

Potential Use

Use user-initiated EXECs when you want to schedule an EXEC from a TS or
an MVS console. The example in this section shows how to schedule an
EXEC named START for execution. This EXEC is used to vary a VTAM
node online.

Parameters Passed to the EXEC

The first positional parameter is the 1- to 8-character EXEC name (in this
case, START). Any following positional parameters are optional.

Example of input:

To use the EXEC named START, enter the following command on any TS
command line:

%START termid

where termid is the name of the VTAM node you specify to bring online.
For example, this termid value could be BS4000. The command would look
like the following example:

%START BS4000
BMC Software, Inc., Confidential and Proprietary Information

Appendix C Passing Parameters to CLIST EXECs in AutoOPERATOR C-15

User-Initiated CLIST EXECs
Example

The following shows an example of an EXEC that would be scheduled:

Figure C-5 User-Initiated CLIST EXEC Example

PROC 2 START TERMID
/***/
/* DOC GROUP(MVS) FUNC(VTAM) CODE(VT) */
/* DOC DISP(YES) AUTHOR(B&B) */
/* DOC DESC(ACTIVATE THE NODE) */
/*---*/
IMFEXEC CMD #VARY NET,ACT,ID=&TERMID
EXIT

The positional parameters passed to the PROC statement of the user-initiated
EXEC are shown in the following table:

Describing the Example

In this example, the IMFEXEC CMD statement is used to issue a VTAM
command to vary a terminal online. Refer to “CMD” on page 12-85 for more
information about the IMFEXEC CMD command and MVS commands.

Positional
Parameter

Variable
Name

Value
Passed Description of Value Passed

1 START START Is the EXEC name

2 TERMID BS4000 Is the name of the terminal
BMC Software, Inc., Confidential and Proprietary Information

C-16 MAINVIEW AutoOPERATOR Advanced Automation Guide

Time-Initiated CLIST EXECs
Time-Initiated CLIST EXECs

Time-initiated EXECs are invoked when:

• An EXEC name is specified in the AutoOPERATOR TIMEXEC
application.

These EXECs are invoked by AutoOPERATOR Timer Facility when the
user-defined time condition occurs. Refer to the section called
“TIMEXEC Application” in the MAINVIEW AutoOPERATOR Basic
Automation Guide.

• A BLK request is issued

• An EXEC-initiated EXEC uses the CALLX service

For example, by coding:

IMFEXEC IMFC SET REQ=CALLX @HOURLY START=06:00:00
STOP=16:00:00 +
 I=01:00:00

EXEC @HOURLY will execute every hour, beginning at 6:00 am and
ending at 4:00 pm.

• The @TIMER sample solution is used (refer to the MAINVIEW
AutoOPERATOR Basic Automation Guide for more information).

Potential Use

Any production environment that follows a daily schedule requires specific
jobs to start and stop at the same time every day. Using the AutoOPERATOR
Timer Facility, you can have EXECs automatically scheduled at specific
times to perform automation tasks or react to certain activities.
BMC Software, Inc., Confidential and Proprietary Information

Appendix C Passing Parameters to CLIST EXECs in AutoOPERATOR C-17

Time-Initiated CLIST EXECs
Parameters Passed to the EXEC

Time-initiated EXECs have specific information passed to the 11 positional
parameters as described in this table.

Positional
Parameter Description of Parameter Value

1 EXECNAME - 1 to 8 character name of this EXEC.

2 1- to 8-character target name.

3 MAINVIEW AutoOPERATOR for IMS only.
This is the 4-character IMS ID used by MAINVIEW AutoOPERATOR for IMS only. This variable
must be coded; however, its value is unpredictable for MAINVIEW AutoOPERATOR for CICS
and MAINVIEW AutoOPERATOR for MVS.

4 4-character BBI-SS PAS Subsystem identifier.

5 Current Gregorian date in mm/dd/yy format.

6 The time the EXEC is scheduled. The time is in the hours:minutes:seconds format of hh:mm:ss.
This is the time when the timer-driven request interval expires. In a congested system, the
actual EXEC execution could be delayed because of MVS dispatching priorities.

7 Day of the week is a digit, where 1 is Monday, 2 is Tuesday, 3 is Wednesday, 4 is Thursday, 5 is
Friday, 6 is Saturday, and 7 is Sunday.

8 Current Julian date in yyddd format.

9 MAINVIEW AutoOPERATOR for IMS only.
Not used by MAINVIEW AutoOPERATOR for CICS or MVS. This variable must be coded;
however, its value is unpredictable for MAINVIEW AutoOPERATOR for CICS and MAINVIEW
AutoOPERATOR for MVS.
This is the elapsed time that IMS/VS has been active in the total hours:minutes:seconds format
of hhh:mm:ss. This is the elapsed control region job time, not the elapsed time since the first
IMS/VS checkpoint. If IMS/VS is not active, the value is 000:00:00.

10 MAINVIEW AutoOPERATOR for IMS only.
Not used by MAINVIEW AutoOPERATOR for CICS or MVS. This variable must be coded;
however, its value is unpredictable for MAINVIEW AutoOPERATOR for CICS and MAINVIEW
AutoOPERATOR for MVS.
The IMS/VS restart type, as follows:
EREEmergency restart
WARMWarm restart
COLDCold restart
INACTIMS/VS is not active. This value is also passed during:
• IMS/VS initialization until the first checkpoint is taken
• IMS/VS termination after the shutdown checkpoint is issued

It remains INACT until IMS/VS restarts and the first checkpoint is taken.

11 MAINVIEW AutoOPERATOR for IMS only.
Not used by MAINVIEW AutoOPERATOR for CICS or MVS. This variable must be coded;
however, its value is unpredictable for MAINVIEW AutoOPERATOR for CICS and MAINVIEW
AutoOPERATOR for MVS.
A 1- to 5-digit number for the number of times the EXEC has been invoked. The P10 value is
reset to 1 every time the P9 status changes.
BMC Software, Inc., Confidential and Proprietary Information

C-18 MAINVIEW AutoOPERATOR Advanced Automation Guide

Time-Initiated CLIST EXECs
It is not always necessary to identify all 11 parameters on the PROC
statement. For example, an EXEC may only require positional parameter
eight (the current Julian date). In this case, only the first eight parameters
need to be coded on the PROC statement. The required PROC would be:

PROC 8 P1 P2 P3 P4 P5 P6 P7 P8

Example

Figure C-6 Time-Initiated CLIST EXEC Example

PROC 1 EXECNAME
 /*---*/
 /*EXEC Description: This sample EXEC displays the status of your */
 /* system. */
 /*---*/
 /*Positional Parameter Count: */
 /* */
 /*11 The total number of PROC parameters. This value will */
 /* always be 11 for a time-initiated EXEC. */
 /* */
 /*Symbolic Parameter Definitions: */
 /* */
 /*SSTATUS The BBPROC member name for this EXEC. */
 /* */
 /*-- */
IMFEXEC CMD .D V,ALL /* Displays all shared variables */
IMFEXEC CMD .D L,ALL /* Displays status of BBI-SS PAS/BBI-SS PAS Links*/
IMFEXEC CMD .D R /* Displays remote users */
IMFEXEC CMD .D A /* Displays ACTIVE STATUS */
EXIT

The positional parameters passed to the PROC statement of the time-initiated
EXEC are shown in the following table:

Positional
Parameter

Variable
Name

Value
Passed Description of Value Passed

1 EXECNAME SSTATUS Is the name of the EXEC invoked by the timer facility
BMC Software, Inc., Confidential and Proprietary Information

Appendix C Passing Parameters to CLIST EXECs in AutoOPERATOR C-19

Time-Initiated CLIST EXECs
Describing the Example

This EXEC uses the IMFEXEC CMD command to issue various BBI control
commands to be logged to the BBI-SS PAS Journal. The PROC statement is
written as the first statement of the EXEC named SSTATUS by specifying:

PROC 1 EXECNAME

where:

• PROC is a required control statement

• EXECNAME is a variable which contains the name of the EXEC

There is only one positional parameter in this statement, the variable
containing the EXEC name. The remaining 10 positional parameters are
ignored.

This time-initiated EXEC is scheduled to take a snapshot of the BBI
environment. The EXEC uses only one input variable for this task and it
issues four BBI control commands so the output is recorded in the BBI-SS
PAS Journal. This allows you to review the data.
BMC Software, Inc., Confidential and Proprietary Information

C-20 MAINVIEW AutoOPERATOR Advanced Automation Guide

EXEC-Initiated CLIST EXECs
EXEC-Initiated CLIST EXECs

An EXEC-initiated EXEC is scheduled when the IMFEXEC SELECT
command is coded, specifying the EXEC parameter. The EXEC parameter
names the EXEC to be scheduled along with any parameters; for example:

IMFEXEC SELECT . . . EXEC(execname)

where execname is the name of any EXEC to be scheduled.

Potential Use

Use an EXEC-initiated EXEC when you want to:

• Invoke a common EXEC that might be used by several other EXECs

• Schedule another EXEC and have it execute asynchronously

EXEC-initiated EXECs can be scheduled to execute either
synchronously or asynchronously by the calling EXEC. For more
information, see “Invoking EXECs Synchronously with IMFEXEC
SELECT(EXEC) WAIT(YES)” on page 5-8.

Parameters Passed to the EXEC

The first positional parameter is the 1- to 8-character name of the EXEC. Any
following positional parameters are optional.

Example of input:

The command:

IMFEXEC SELECT EXEC(START BS4000)

schedules the EXEC called START for execution. An optional parameter
containing the value BS4000 is passed to START as input.
BMC Software, Inc., Confidential and Proprietary Information

Appendix C Passing Parameters to CLIST EXECs in AutoOPERATOR C-21

EXEC-Initiated CLIST EXECs
Example

This example shows the calling EXEC that schedules the called EXEC
named START:

PROC 0
/***/
/* DOC GROUP(MVS) FUNC(VTAM) CODE(VT) */
/* DOC DISP(YES) AUTHOR(B&B) */
/* DOC DESC(CALL ACTIVATE EXEC) */
/*---*/
IMFEXEC SELECT EXEC(START BS4000)
EXIT

This example shows the called EXEC:

Figure C-7 EXEC-Initiated CLIST EXEC Example

PROC 2 START TERMID
/***/
/* DOC GROUP(MVS) FUNC(VTAM) CODE(VT) */
/* DOC DISP(YES) AUTHOR(B&B) */
/* DOC DESC(ACTIVATE THE NODE) */
/*---*/
IMFEXEC CMD #VARY NET,ACT,ID=&TERMID
EXIT

The positional parameters passed to the PROC statement of the user-initiated
EXEC are shown in the following table:

Describing the Example

In this example, an EXEC is scheduling another EXEC for execution with the
IMFEXEC SELECT command. The called EXEC in this example receives a
parameter from the calling EXEC (BS4000) and uses that value to vary a
VTAM node active with the IMFEXEC CMD command. Refer to “CMD” on
page 12-85 for more information about the IMFEXEC CMD statement and
MVS commands.

Positional
Parameter

Variable
Name

Value
Passed Description of Value Passed

1 START START Is the name of the EXEC

2 TERMID BS4000 Is the name of the terminal to be started online
BMC Software, Inc., Confidential and Proprietary Information

C-22 MAINVIEW AutoOPERATOR Advanced Automation Guide

Externally Initiated CLIST EXECs
Externally Initiated CLIST EXECs

Externally initiated EXECs are scheduled by:

• A job step that executes the IMFSUBEX program

• A user-written program

• A TSO user

The EXEC that IMFSUBEX schedules is called an externally initiated
EXEC.

Potential Use

There are many instances where full automation requires the completion of a
task that is not an EXEC and is running outside of the BBI-SS PAS. A
database backup is one example. When the backup completes, you can use an
externally initiated EXEC to notify AutoOPERATOR to schedule any further
actions.

Two possible ways to do this are through writing a Rule and through
IMFSUBEX. If you use the Rule Processor application to write Rules, then:

Step 1 Create a message with a unique message-ID

Step 2 Send the message to the operator's console

Step 3 Create a Rule to process the message

If you use the IMFSUBEX facility, you can directly schedule an EXEC to
take subsequent automation actions. For more information for how to invoke
externally initiated EXECs, refer to “Invoking REXX EXECs from Outside
of AutoOPERATOR with IMFSUBEX” on page 6-9.

Parameters Passed to the EXEC

The first positional parameter is the 1- to 8-character name of the EXEC. Any
following positional parameter are optional.
BMC Software, Inc., Confidential and Proprietary Information

Appendix C Passing Parameters to CLIST EXECs in AutoOPERATOR C-23

Externally Initiated CLIST EXECs
Example of input:

The following JCL shows how the subroutine IMFSUBEX schedules an
EXEC named BACKDONE for execution.

//STEPX EXEC PGM=IMFSUBEX,
// PARM=’SS(SSA1) EXEC(BACKDONE SYST1)’

Example

The following EXEC is scheduled:

Figure C-8 Externally Initiated CLIST EXEC Example

PROC 2 BACKDONE V1
/***/
/* DOC GROUP(MVS) FUNC(BKUP) CODE(BK) */
/* DOC DISP(YES) AUTHOR(B&B) */
/* DOC DESC(SEND NOTIFY/LOG FOR A SUCCESSFUL BACKUP) */
/*---*/
IMFEXEC CMD SE ’VOLUME &V1 SUCCESSFULLY DUMPED’,LOGON,USER=(SYSP1,SYSP2)
IMFEXEC MSG ’VOLUME &V1 SUCCESSFULLY DUMPED’
EXIT

The positional parameters passed to the EXEC-initiated EXEC are shown in
the following table:

Describing the Example

The EXEC named BACKDONE is scheduled to execute in a target subsystem
called SSA1. A single parameter is passed (SYST1) which is a DASD
volume serial number. The BACKDONE EXEC receives a volume serial
number of a DASD from the second positional parameter to IMFSUBEX.

Positional
Parameter

Variable
Name Value Passed Description of Value Passed

1 BACKDONE BACKDONE Is the name of the EXEC invoked

2 V1 SYST1 Is the volume serial number of the backed up device
BMC Software, Inc., Confidential and Proprietary Information

C-24 MAINVIEW AutoOPERATOR Advanced Automation Guide

End-of-Memory Initiated CLIST EXEC
The BACKDONE EXEC first sends a message to two TSO users, SYSP1
and SYSP2, informing them that the volume backup has been successful and
then places a message in the BBI-SS PAS Journal recording a successful
operation.

End-of-Memory Initiated CLIST EXEC

Use the End-of-Memory EXEC to ensure that critical address spaces do not
terminate unnoticed.

Potential Use

Normally, address space termination can be monitored using standard MVS
and JES messages. However, there are situations when monitoring based on
these messages is not sufficient because an address space may terminate
without producing the expected messages. For example, the expected
termination messages may not be produced if the MVS FORCE or
SYSPROG EXIT command is used or when an initiator abends.

The End-of-Memory EXEC allows AutoOPERATOR to monitor address
space termination regardless of how the address space is terminated. This
EXEC is scheduled for the following things when the associated events
occur:

Batch jobs Only when the initiator terminates

TSO users When any TSO user is terminated

Started tasks When any started task is terminated

There is only one End-of-Memory EXEC for each AutoOPERATOR
subsystem. Each time one of the above mentioned events occurs,
AutoOPERATOR automatically schedules an EXEC named IMFEOM if it
exists in the SYSPROC concatenation.

Parameters Passed to the EXEC

Two parameters are passed to the End-of-Memory EXEC.

• The first parameter contains the fixed string of *EOM*
BMC Software, Inc., Confidential and Proprietary Information

Appendix C Passing Parameters to CLIST EXECs in AutoOPERATOR C-25

End-of-Memory Initiated CLIST EXEC
• The second parameter contains a character string which can have one of
two values:

Parameter value Description

NORMAL Indicates normal address space termination

ABNORMAL Indicates address space was terminated by passing it to RTM

This may happen when using the SYSPROG EXIT command or the
MVS FORCE command. This is not an indication that the address
space abended with a system or user abend code.

Example

This first example shows an EXEC called STRT that is invoked by a Rule (a
Rule-initiated EXEC). The Rule is fired when the JES2 message $HASP373
is issued for jobname PRODSTC: $HASP373 indicates that the job has
started.

PROC 0
/*---*/
/* THIS EXEC IS DRIVEN FROM JES2 MESSAGE, $HASP373, FOR STC */
/* PRODSTC ONLY */
/* */
/* EXEC DESCRIPTION: SET VARIABLE "PRODSTKN" TO STOKEN OF PRODSTC*/
/*---*/
SET PRODSTKN = &IMFSTOKN
IMFEXEC VPUT PRODSTKN

The second EXEC, IMFEOM, is automatically scheduled when any started
task or TSO address space terminates or when a batch initiator abends.
BMC Software, Inc., Confidential and Proprietary Information

C-26 MAINVIEW AutoOPERATOR Advanced Automation Guide

End-of-Memory Initiated CLIST EXEC
Figure C-9 End-of-Memory–Initiated EXEC Example

PROC 2 IMFEOM STATUS
/*--*/
/* THIS EXEC IS DRIVEN FROM END OF MEMORY EXIT */
/* */
/* EXEC DESCRIPTION: DETERMINE IF ADDRESS SPACE TERMINATING IS */
/* "PRODSTC". IF SO, INFORM THE OPERATOR. */
/*--*/
IMFEXEC VGET PRODSTKN
 IF &IMFCC = 0 THEN DO
 IF &PRODSTKN = &IMFSTOKN THEN DO
 SET &PRODSTKN =
 IMFEXEC VPUT PRODSTKN
 IF &STATUS = ABNORMAL THEN +
 IMFEXEC WTO ’PRODSTC ENDED ABNORMALLY’
 END
 END

Describing the Example

When the STRT EXEC is scheduled, the local variable IMFSTOKN contains
an identifier that uniquely identifies the PRODSTC started task. Since this
variable only exists for the life of the EXEC, STRT saves the IMFSTOKN
value in the shared variable pool so that it can be used subsequently by the
IMFEOM EXEC.

Warning! If this procedure will be used for more than one address space,
you should use a variable name other than IMFSTOKN in the
shared variable pool or else the value IMFSTOKN might be
overridden by the other procedures.

When the IMFEOM EXEC is scheduled, IMFSTOKN refers to the address
space that is being terminated. The IMFEOM EXEC compares IMFSTOKN
to the PRODSTKN value saved previously by the EXEC named STRT. If the
values do not match, IMFEOM exits because the address space that is
terminating is not one that is being monitored. If the values do match and the
parameter passed to IMFEOM indicates abnormal termination, then a WTO
(write-to-operator) is issued to notify the operator.

Refer to “TSO Variables Supplied by AutoOPERATOR” on page 4-7 for
more information about AutoOPERATOR-supplied variables.
BMC Software, Inc., Confidential and Proprietary Information

Appendix C Passing Parameters to CLIST EXECs in AutoOPERATOR C-27

End-of-Memory Initiated CLIST EXEC
BMC Software, Inc., Confidential and Proprietary Information

C-28 MAINVIEW AutoOPERATOR Advanced Automation Guide

26
Glossary

This glossary defines BMC Software terminology. Other dictionaries and
glossaries can be used in conjunction with this glossary.

Since this glossary pertains to BMC Software-related products, some of the
terms defined might not appear in this book.

To help you find the information you need, this glossary uses the following
cross-references:

Contrast with indicates a term that has a contrary or contradictory meaning.

See indicates an entry that is a synonym or contains expanded information.

See also indicates an entry that contains related information.

action Defined operation, such as modifying a MAINVIEW window, that is
performed in response to a command. See object.

active window Any MAINVIEW window in which data can be refreshed. See alternate
window, current window, window.

administrative view Display from which a product’s management tasks are performed, such as the
DSLIST view for managing historical data sets. See view.

ALT WIN field Input field that allows you to specify the window identifier for an alternate
window where the results of a hyperlink are displayed. See alternate window.

Alternate Access See MAINVIEW Alternate Access.

alternate form View requested through the FORM command that changes the format of a
previously displayed view to show related information. See also form, query.
BMC Software, Inc., Confidential and Proprietary Information

 Glossary 1

alternate window (1) Window that is specifically selected to display the results of a hyperlink.
(2) Window whose identifier is defined to the ALT WIN field. Contrast with
current window. See active window, window, ALT WIN field.

analyzer (1) Online display that presents a snapshot of status and activity data and
indicates problem areas. (2) Component of CMF MONITOR. See CMF
MONITOR Analyzer.

application (1) Program that performs a specific set of tasks within a MAINVIEW
product. (2) In MAINVIEW VistaPoint, combination of workloads to enable
display of their transaction performance data in a single view.

application trace See trace.

ASCH workload Workload comprising Advanced Program-to-Program Communication
(APPC) address spaces.

AutoCustomization Online facility for customizing the installation of products.
AutoCustomization provides an ISPF panel interface that both presents
customization steps in sequence and provides current status information
about the progress of the installation.

automatic screen update
Usage mode wherein the currently displayed screen is refreshed
automatically with new data at an interval you specify. Invoked by the ASU
command.

batch workload Workload consisting of address spaces running batch jobs.

BBI Basic architecture that distributes work between workstations and multiple
OS/390 targets for BMC Software MAINVIEW products.

BBI-SS PAS See BBI subsystem product address space.

BBI subsystem product address space (BBI-SS PAS)
OS/390 subsystem address space that manages communication between local
and remote systems and that contains one or more of the following products:

• MAINVIEW AutoOPERATOR
• MAINVIEW for CICS
• MAINVIEW for DB2
• MAINVIEW for DBCTL
• MAINVIEW for IMS Online
• MAINVIEW for WebSphere MQ
• MAINVIEW for WebSphere MQ Integrator
• MAINVIEW SRM
• MAINVIEW VistaPoint (for CICS, DB2, DBCTl, and IMS workloads)
BMC Software, Inc., Confidential and Proprietary Information

2 MAINVIEW AutoOPERATOR Advanced Automation Guide

BBPARM See parameter library.

BBPROC See procedure library.

BBPROF See profile library.

BBSAMP See sample library.

BBV See MAINVIEW Alternate Access.

BBXS BMC Software Subsystem Services. Common set of service routines loaded
into common storage and used by several BMC Software MAINVIEW
products.

border Visual indication of the boundaries of a window.

bottleneck analysis Process of determining which resources have insufficient capacity to provide
acceptable service levels and that therefore can cause performance problems.

CA-Disk Data management system by Computer Associates that replaced the DMS
product.

CAS Coordinating address space. One of the address spaces used by the
MAINVIEW windows environment architecture. The CAS supplies common
services and enables communication between linked systems. Each OS/390
or z/OS image requires a separate CAS. Cross-system communication is
established through the CAS using VTAM and XCF communication links.

CFMON See coupling facility monitoring.

chart Display format for graphical data. See also graph.

CICSplex User-defined set of one or more CICS systems that are controlled and
managed as a single functional entity.

CMF MONITOR Comprehensive Management Facility MONITOR. Product that measures and
reports on all critical system resources, such as CPU, channel, and device
usage; memory, paging, and swapping activity; and workload performance.

CMF MONITOR Analyzer
Batch component of CMF MONITOR that reads the SMF user and 70 series
records created by the CMF MONITOR Extractor and/or the RMF Extractor
and formats them into printed system performance reports.
BMC Software, Inc., Confidential and Proprietary Information

 Glossary 3

CMF MONITOR Extractor
Component of CMF that collects performance statistics for CMF MONITOR
Analyzer, CMF MONITOR Online, MAINVIEW for OS/390, and RMF
postprocessor. See CMF MONITOR Analyzer, CMF MONITOR Online,
MAINVIEW for OS/390.

CMF MONITOR Online
Component of CMF that uses the MAINVIEW window interface to present
data on all address spaces, their use of various system resources, and the
delays that each address space incurs while waiting for access to these
resources. See CMF MONITOR, MAINVIEW for OS/390.

CMF Type 79 API Application programming interface, provided by CMF, that provides access
to MAINVIEW SMF-type 79 records.

CMFMON Component of CMF MONITOR that simplifies online retrieval of
information about system hardware and application performance and creates
MAINVIEW SMF-type 79 records.

The CMFMON online facility can be used to view data in one or more
formatted screens.

The CMFMON write facility can be used to write collected data as
MAINVIEW SMF-type 79 records to an SMF or sequential data set.

CMRDETL MAINVIEW for CICS data set that stores detail transaction records (type 6E)
and abend records (type 6D). Detail records are logged for each successful
transaction. Abend records are written when an abend occurs. Both records
have the same format when stored on CMRDETL.

CMRSTATS MAINVIEW for CICS data set that stores both CICS operational statistic
records, at five-minute intervals, and other records, at intervals defined by
parameters specified during customization (using CMRSOPT).

column Vertical component of a view or display, typically containing fields of the
same type of information, that varies by the objects associated in each row.

collection interval Length of time data is collected. See also delta mode, total mode.

command delimiter Special character, usually a ; (semicolon), used to stack commands typed
concurrently on the COMMAND line for sequential execution.

COMMAND line Line in the control area of the display screen where primary commands can
be typed. Contrast with line command column.
BMC Software, Inc., Confidential and Proprietary Information

4 MAINVIEW AutoOPERATOR Advanced Automation Guide

Command MQ Automation D/S
Command MQ agents, which provide local proactive monitoring for both
MQSeries and MSMQ (Microsoft message queue manager). The Command
MQ agents operate at the local node level where they continue to perform
functions regardless of the availability of the MQM (message queue
manager) network. Functionality includes automatic monitoring and restarts
of channels, queue managers, queues and command servers. In cases where
automated recovery is not possible, the agents transport critical alert
information to a central console.

Command MQ Automation S/390
Command MQ component, which monitors the MQM (message queue
manager) networks and intercedes to perform corrective actions when
problems arise. Solutions include:

• Dead-Letter Queue management
• System Queue Archival
• Service Interval Performance solutions
• Channel Availability

These solutions help ensure immediate relief to some of the most pressing
MQM operations and performance problems.

Command MQ for D/S
Command MQ for D/S utilizes a true client/server architecture and employs
resident agents to provide configuration, administration, performance
monitoring and operations management for the MQM (message queue
manager) network.

Command MQ for S/390
See MAINVIEW for WebSphere MQ.

COMMON STORAGE MONITOR
Component of MAINVIEW for OS/390 that monitors usage and reconfigures
OS/390 or z/OS common storage blocks.

composite workload
Workload made up of a WLM workload or other workloads, which are called
constituent workloads.

constituent workload
Member of a composite workload. Constituent workloads in a composite
usually belong to a single workload class, but sometimes are mixed.

contention Occurs when there are more requests for service than there are servers
available.
BMC Software, Inc., Confidential and Proprietary Information

 Glossary 5

context In a Plex Manager view, field that contains the name of a target or group of
targets specified with the CONTEXT command. See scope, service point,
SSI context, target context.

CONTEXT command
Specifies either a MAINVIEW product and a specific target for that product
(see target context) or a MAINVIEW product and a name representing one or
more targets (see SSI context) for that product.

control statement (1) Statement that interrupts a sequence of instructions and transfers control
to another part of the program. (2) Statement that names samplers and other
parameters that configure the MAINVIEW components to perform specified
functions. (3) In CMF MONITOR, statement in a parameter library member
used to identify a sampler in the extractor or a report in the analyzer, or to
describe either component’s processing requirements to the operating system.

coupling facility monitoring (CFMON)
Coupling facility views that monitor the activity of your system’s coupling
facilities.

current data Data that reflects the system in its current state. The two types of current data
are real-time data and interval data. Contrast with historical data. See also
interval data, real-time data.

current window In the MAINVIEW window environment, window where the main dialog
with the application takes place. The current window is used as the default
window destination for commands issued on the COMMAND line when no
window number is specified. Contrast with alternate window. See active
window, window.

DASD (Direct Access Storage Device) (1) A device with rotating recording surfaces
that provides immediate access to stored data. (2) Any device that responds
to a DASD program.

DASD ADVISOR An interactive software tool that diagnoses DASD performance problems and
makes recommendations to reduce overall service time. This tool measures
and reports on the operational performance of IBM and IBM-compatible
devices.

data collector Program that belongs to a MAINVIEW product and that collects data from
various sources and stores the data in records used by views. For example,
MAINVIEW for OS/390 data collectors obtain data from OS/390 or z/OS
services, OS/390 or z/OS control blocks, CMF MONITOR Extractor control
blocks, and other sources. Contrast with extractor.
BMC Software, Inc., Confidential and Proprietary Information

6 MAINVIEW AutoOPERATOR Advanced Automation Guide

delta mode (1) In MAINVIEW for DB2 analyzer displays, difference between the value
sampled at the start of the current statistics interval and the value sampled by
the current analyzer request. See also statistics interval. (2) In CMFMON,
usage mode wherein certain columns of data reflect the difference in values
between one sample cycle and the next. Invoked by the DELta ON
command. See also collection interval, sample cycle, total mode.

DFSMS (Data Facility Storage Management System) Data management, backup, and
HSM software from IBM for OS/390 or z/OS mainframes.

DMR See MAINVIEW for DB2.

DMS (Data Management System) See CA-Disk.

DMS2HSM See MAINVIEW SRM DMS2HSM.

DSO (Data Set Optimizer) CMF MONITOR Extractor component that uses CMF
MONITOR Extractor data to produce reports specifying the optimal ordering
of data sets on moveable head devices.

EasyHSM See MAINVIEW SRM EasyHSM.

EasyPOOL See MAINVIEW SRM EasyPOOL.

EasySMS See MAINVIEW SRM EasySMS.

element (1) Data component of a data collector record, shown in a view as a field. (2)
Internal value of a field in a view, used in product functions.

element help Online help for a field in a view. The preferred term is field help.

Enterprise Storage Automation
See MAINVIEW SRM Enterprise Storage Automation.

event A message issued by Enterprise Storage Automation. User-defined storage
occurrences generate events in the form of messages. These events provide an
early warning system for storage problems and are routed to user-specified
destinations for central viewing and management.

Event Collector Component for MAINVIEW for IMS Online, MAINVIEW for IMS Offline,
and MAINVIEW for DBCTL that collects data about events in the IMS
environment. This data is required for Workload Monitor and optional for
Workload Analyzer (except for the workload trace service). This data also is
recorded as transaction records (X‘FA’) and program records (X‘F9’) on the
IMS system log for later use by the MAINVIEW for IMS Offline
components: Performance Reporter and Transaction Accountant.

expand Predefined link from one display to a related display. See also hyperlink.
BMC Software, Inc., Confidential and Proprietary Information

 Glossary 7

extractor Program that collects data from various sources and keeps the data control
blocks to be written as records. Extractors obtain data from services, control
blocks, and other sources. Contrast with data collector.

extractor interval See collection interval.

fast path Predefined link between one screen and another. To use the fast path, place
the cursor on a single value in a field and press Enter. The resulting screen
displays more detailed information about the selected value. See also
hyperlink.

field Group of character positions within a screen or report used to type or display
specific information.

field help Online help describing the purpose or contents of a field on a screen. To
display field help, place the cursor anywhere in a field and press PF1
(HELP). In some products, field help is accessible from the screen help that
is displayed when you press PF1.

filter Selection criteria used to limit the number of rows displayed in a view. Data
that does not meet the selection criteria is not displayed. A filter is composed
of an element, an operator, and an operand (a number or character string).
Filters can be implemented in view customization, through the PARm/
QPARm commands, or through the Where/QWhere commands. Filters are
established against elements of data.

fire The term used to indicate that an event has triggered an action. In
MAINVIEW AutoOPERATOR, when a rule selection criteria matches an
incoming event and fires, the user-specified automation actions are
performed. This process is also called handling the event.

fixed field Field that remains stationary at the left margin of a screen that is scrolled
either right or left.

FOCAL POINT MAINVIEW product that displays a summary of key performance indicators
across systems, sites, and applications from a single terminal.

form One of two constituent parts of a view; the other is query. A form defines
how the data is presented; a query identifies the data required for the view.
See also query, view.

full-screen mode Display of a MAINVIEW product application or service on the entire screen.
There is no window information line. Contrast with windows mode.

global command Any MAINVIEW window interface command that can affect all windows in
the window area of a MAINVIEW display.
BMC Software, Inc., Confidential and Proprietary Information

8 MAINVIEW AutoOPERATOR Advanced Automation Guide

graph Graphical display of data that you select from a MAINVIEW window
environment view. See also chart.

hilevel For MAINVIEW products, high-level data set qualifier required by a site’s
naming conventions.

historical data (1) Data that reflects the system as it existed at the end of a past recording
interval or the duration of several intervals. (2) Any data stored in the
historical database and retrieved using the TIME command. Contrast with
current data, interval data and real-time data.

historical database Collection of performance data written at the end of each installation-defined
recording interval and containing up to 100 VSAM clusters. Data is extracted
from the historical database with the TIME command. See historical data.

historical data set In MAINVIEW products that display historical data, VSAM cluster file in
which data is recorded at regular intervals.

HSM (Hierarchical Storage Management) Automatic movement of files from hard
disk to slower, less-expensive storage media. The typical hierarchy is from
magnetic disk to optical disk to tape.

hyperlink (1) Preset field in a view or an EXPAND line on a display that permits you to

• access cursor-sensitive help
• issue commands
• link to another view or display

The transfer can be either within a single product or to a related display/view
in a different BMC Software product. Generally, hyperlinked fields are
highlighted. (2) Cursor-activated short path from a topic or term in online
help to related information. See also fast path.

Image log Collection of screen-display records. Image logs can be created for both the
BBI-SS PAS and the BBI terminal session (TS).

The BBI-SS PAS Image log consists of two data sets that are used
alternately: as one fills up, the other is used. Logging to the BBI-SS PAS
Image log stops when both data sets are filled and the first data set is not
processed by the archive program.

The TS Image log is a single data set that wraps around when full.

IMSPlex System Manager (IPSM)
MVIMS Online and MVDBC service that provides Single System Image
views of resources and bottlenecks for applications across one or more IMS
regions and systems.
BMC Software, Inc., Confidential and Proprietary Information

 Glossary 9

interval data Cumulative data collected during a collection interval. Intervals usually last
from 15 to 30 minutes depending on how the recording interval is specified
during product customization. Contrast with historical data.

Note: If change is made to the workloads, a new interval will be started.

See also current data and real-time data.

InTune Product for improving application program performance. It monitors the
program and provides information used to reduce bottlenecks and delays.

IRUF IMS Resource Utilization File (IRUF). IRUFs can be either detail (one event,
one record) or summarized (more than one event, one record). A detail IRUF
is created by processing the IMS system log through a program called
IMFLEDIT. A summarized IRUF is created by processing one or more detail
IRUFs, one or more summarized IRUFs, or a combination of both, through a
sort program and the TASCOSTR program.

job activity view Report about address space consumption of resources. See view.

journal Special-purpose data set that stores the chronological records of operator and
system actions.

Journal log Collection of messages. Journal logs are created for both the BBI-SS PAS
and the BBI terminal session (TS).

The BBI-SS PAS Journal log consists of two data sets that are used
alternately: as one fills up, the other is used. Logging to the BBI-SS PAS
Journal log stops when both data sets are filled and the first data set is not
being processed by the archive program.

The TS Journal log is a single data set that wraps around when full.

line command Command that you type in the line command column in a view or display.
Line commands initiate actions that apply to the data displayed in that
particular row.

line command column
Command input column on the left side of a view or display. Contrast with
COMMAND line.

Log Edit In the MAINVIEW for IMS Offline program named IMFLEDIT, function
that extracts transaction (X‘FA’) and program (X‘F9’) records from the IMS
system log. IMFLEDIT also extracts certain records that were recorded on
the system log by IMS. IMFLEDIT then formats the records into a file called
the IMS Resource Utilization File (IRUF).

MAINVIEW BMC Software integrated systems management architecture.
BMC Software, Inc., Confidential and Proprietary Information

10 MAINVIEW AutoOPERATOR Advanced Automation Guide

MAINVIEW Alarm Manager (MV ALARM)
In conjunction with other MAINVIEW products, notifies you when an
exception occurs. MAINVIEW Alarm Manager is capable of monitoring
multiple systems simultaneously, which means that MAINVIEW Alarm
Manager installed on one system keeps track of your entire sysplex. You can
then display a single view that shows exceptions for all MAINVIEW
performance monitors within your OS/390 or z/OS enterprise.

MAINVIEW Alternate Access
Enables MAINVIEW products to be used without TSO by providing access
through EXCP and VTAM interfaces.

MAINVIEW Application Program Interface (MVAPI)
A CLIST- or REXX-based, callable interface that allows MAINVIEW
AutoOPERATOR EXECs to access MAINVIEW monitor product view data.

MAINVIEW AutoOPERATOR
Product that uses tools, techniques, and facilities to automate routine operator
tasks and provide online performance monitoring, and that achieves high
availability through error minimization, improved productivity, and problem
prediction and prevention.

MAINVIEW control area
In the MAINVIEW window environment, first three lines at the top of the
view containing the window information line and the COMMAND,
SCROLL, CURR WIN, and ALT WIN lines. The control area cannot be
customized and is part of the information display. Contrast with
MAINVIEW display area, MAINVIEW window area.

MAINVIEW Desktop Version of the MAINVIEW window interface designed to run on OS/2 and
Windows workstations.

MAINVIEW display area
See MAINVIEW window area.

MAINVIEW Explorer Product that provides access to MAINVIEW products from a Web browser
running under Windows. MAINVIEW Explorer replaces MAINVIEW
Desktop.

MAINVIEW for CICS Product (formerly MV MANAGER for CICS) that provides real-time
application performance analysis and monitoring for CICS system
management.

MAINVIEW for DB2 Product (formerly MV MANAGER for DB2) that provides real-time and
historical application performance analysis and monitoring for DB2
subsystem management.
BMC Software, Inc., Confidential and Proprietary Information

 Glossary 11

MAINVIEW for DBCTL (MVDBC)
Product that provides real-time application performance analysis and
monitoring for DBCTL management.

MAINVIEW for IMS (MVIMS) Offline
Product with a Performance Reporter component that organizes data and
prints reports used to analyze IMS performance and a Transaction
Accountant component that produces cost accounting and user charge-back
records and reports.

MAINVIEW for IMS (MVIMS) Online
Product that provides real-time application performance analysis and
monitoring for IMS management.

MAINVIEW for IP Product that monitors OS/390 and z/OS mission-critical application
performance as it relates to TCP/IP stack usage. Collected data includes
availability, connections, response times, routers, service levels, storage,
traffic, Web cache, and so on.

MAINVIEW for Linux–Servers
Product that allows you to monitor the performance of your Linux systems
from the MAINVIEW windows interface.

MAINVIEW for MQSeries
See MAINVIEW for WebSphere MQ.

MAINVIEW for OS/390
System management application (formerly known as MAINVIEW for MVS
prior to version 2.5). Built upon the MAINVIEW window environment
architecture, it uses the window interface to provide access to system
performance data and other functions necessary in the overall management of
an enterprise.

MAINVIEW for UNIX System Services
System management application that allows you to monitor the performance
of the Unix System Services from a MAINVIEW window interface.

MAINVIEW for VTAM
Product that displays application performance data by application, transaction
ID, and LU name. This collected data includes connections, response time
statistics, application availability, and application throughput.

MAINVIEW for WebSphere Application Server (formerly known as MAINVIEW for
WebSphere)

Product that provides extensive monitoring for the IBM WebSphere
Application Server for z/OS and OS/390 environment.
BMC Software, Inc., Confidential and Proprietary Information

12 MAINVIEW AutoOPERATOR Advanced Automation Guide

MAINVIEW for WebSphere MQ
Delivers comprehensive capabilities for configuration, administration,
performance monitoring and operations management for an entire MQM
(message queue manager) network.

MAINVIEW for WebSphere MQ Integrator
Licensed feature of MAINVIEW for WebSphere MQ that provides
comprehensive configuration, administration, performance monitoring, and
operations management capabilities for an IBM WebSphere MQ Integrator
message broker network.

MAINVIEW Selection Menu
ISPF selection panel that provides access to all MAINVIEW windows-mode
and full-screen mode products.

MAINVIEW SRM See MAINVIEW Storage Resource Manager (SRM).

MAINVIEW SRM DMS2HSM
Product that facilitates the conversion of CA-Disk, formerly known as DMS,
to HSM.

MAINVIEW SRM EasyHSM
Product that provides online monitoring and reporting to help storage
managers use DFHSM efficiently.

MAINVIEW SRM EasyPOOL
Product that provides control over data set allocation and enforcement of
allocation and naming standards. EasyPOOL functions operate at the
operating system level to intercept normal job processing, thus providing
services without any JCL changes.

MAINVIEW SRM EasySMS
Product that provides tools that aid in the conversion to DFSMS and provides
enhancement to the DFSMS environment after implementation. EasySMS
consists of the EasyACS functions, the SMSACSTE function, and the
Monitoring and Positioning Facility.

MAINVIEW SRM Enterprise Storage Automation
Product that delivers powerful event generation and storage automation
technology across the storage enterprise. Used in conjunction with
MAINVIEW AutoOPERATOR, automated solutions to perform pool,
volume, application, or data set-level manipulation can be created and used in
response to any condition or invoked to perform ad hoc requests.

MAINVIEW SRM SG-Auto
Product that provides early warning notification of storage anomalies and
automated responses to those anomalies based on conditions in the storage
subsystem.
BMC Software, Inc., Confidential and Proprietary Information

 Glossary 13

MAINVIEW SRM SG-Control
Product that provides real-time monitoring, budgeting, and control of DASD
space utilization.

MAINVIEW SRM StopX37/II
Product that provides enhancements to OS/390 or z/OS space management,
reducing the incidence of space-related processing problems. The StopX37/II
functions operate at the system level to intercept abend conditions or
standards violations, thus providing services without any JCL changes.

MAINVIEW SRM StorageGUARD
Product that monitors and reports on DASD consumption and provides
historical views to help control current and future DASD usage.

MAINVIEW Storage Resource Manager (SRM)
Suite of products that assist in all phases of OS/390 or z/OS storage
management. MAINVIEW SRM consists of products that perform
automation, reporting, trend analysis, and error correction for storage
management.

MAINVIEW SYSPROG Services
See SYSPROG services.

MAINVIEW VistaPoint
Product that provides enterprise-wide views of performance. Application and
workload views are available for CICS, DB2, DBCTL, IMS, OS/390, or z/
OS. Data is summarized at the level of detail needed; for example, views can
be for a single target, an OS/390 or z/OS image, or an entire enterprise.

MAINVIEW window area
Portion of the information display that is not the control area and in which
views are displayed and windows opened. It includes all but the first three
lines of the information display. Contrast with MAINVIEW control area.

monitor Online service that measures resources or workloads at user-defined intervals
and issues warnings when user-defined thresholds are exceeded.

Multi-Level Automation (MLA)
The user-defined, multiple step process in Enterprise Storage Automation
that implements solutions in a tiered approach, where solutions are invoked
one after another until the condition is resolved.

MVALARM See MAINVIEW Alarm Manager.

MVAPI See MAINVIEW Application Program Interface.

MVCICS See MAINVIEW for CICS.
BMC Software, Inc., Confidential and Proprietary Information

14 MAINVIEW AutoOPERATOR Advanced Automation Guide

MVDB2 See MAINVIEW for DB2.

MVDBC See MAINVIEW for DBCTL.

MVIMS See MAINVIEW for IMS.

MVIP See MAINVIEW for IP.

MVLNX See MAINVIEW for Linux–Servers.

MVMQ See MAINVIEW for WebSphere MQ or MAINVIEW for WebSphere MQ
Integrator.

MVMVS See MAINVIEW for OS/390.

MVScope MAINVIEW for OS/390 application that traces both CPU usage down to the
CSECT level and I/O usage down to the channel program level.

MVSRM See MAINVIEW Storage Resource Manager (SRM).

MVSRMHSM See MAINVIEW SRM EasyHSM.

MVSRMSGC See MAINVIEW SRM SG-Control.

MVSRMSGD See MAINVIEW SRM StorageGUARD.

MVSRMSGP See MAINVIEW SRM StorageGUARD.

MVUSS See MAINVIEW for UNIX System Services.

MVVP See MAINVIEW VistaPoint.

MVVTAM See MAINVIEW for VTAM.

MVWEB See MAINVIEW for WebSphere Application Server.

nested help Multiple layers of help pop-up windows. Each successive layer is accessed
by clicking a hyperlink from the previous layer.

object Anything you can manipulate as a single unit. MAINVIEW objects can be
any of the following: product, secondary window, view, row, column, or field.

You can issue an action against an object by issuing a line command in the
line command column to the left of the object. See action.

OMVS workload Workload consisting of OS/390 OpenEdition address spaces.

online help Help information that is accessible online.
BMC Software, Inc., Confidential and Proprietary Information

 Glossary 15

OS/390 and z/OS Installer
BMC Software common installation system for mainframe products.

OS/390 product address space (PAS)
Address space containing OS/390 or z/OS data collectors, including the CMF
MONITOR Extractor. Used by MAINVIEW for OS/390, MAINVIEW for
UNIX System Services, and CMF MONITOR products. See PAS.

parameter library Data set consisting of members that contain parameters for specific
MAINVIEW products or a support component There can be several versions:

• the distributed parameter library, called BBPARM
• a site-specific parameter library or libraries

These can be

• a library created by AutoCustomization, called UBBPARM
• a library created manually, with a unique name

PAS Product address space. Used by the MAINVIEW products. Contains data
collectors and other product functions. See also OS/390 product address
space (PAS) and BBI subsystem product address space (BBI-SS PAS).

performance group workload
Collection of address spaces defined to OS/390 or z/OS. If you are running
OS/390 or z/OS with WLM in compatibility mode, MAINVIEW for OS/390
creates a performance group workload instead of a service class.

PERFORMANCE MANAGER
MAINVIEW for CICS online service for monitoring and managing current
performance of CICS regions.

Performance Reporter (MVIMS)
MVIMS Offline component that organizes data and prints reports that can be
used to analyze IMS performance.

Performance Reporter
Product component that generates offline batch reports. The following
products can generate these reports:

• MAINVIEW for DB2
• MAINVIEW for CICS

Plex Manager Product through which cross-system communication, MAINVIEW security,
and an SSI context are established and controlled. Plex Manager is shipped
with MAINVIEW window environment products as part of the coordinating
address space (CAS) and is accessible as a menu option from the
MAINVIEW Selection Menu.
BMC Software, Inc., Confidential and Proprietary Information

16 MAINVIEW AutoOPERATOR Advanced Automation Guide

pop-up display Full-screen panel that displays additional information about a selected event
in a detail trace.

pop-up window Window containing help information that, when active, overlays part of the
window area. A pop-up window is displayed when you issue the HELP
command while working in windows-mode.

PRGP workload In MVS/SP 5.0 or earlier, or in compatibility mode in MVS/SP 5.1 or later,
composite of service classes. MAINVIEW for OS/390 creates a performance
group workload for each performance group defined in the current IEAIPSxx
member.
BMC Software, Inc., Confidential and Proprietary Information

 Glossary 17

procedure library Data set consisting of members that contain executable procedures used by
MAINVIEW AutoOPERATOR. These procedures are execute command lists
(EXECs) that automate site functions. There can be several versions:

• the distributed parameter library, called BBPROC
• a site-specific parameter library or libraries

These can be

• a library created by AutoCustomization, called UBBPROC
• a library created manually, with a unique name

The site-created EXECs can be either user-written or customized
MAINVIEW AutoOPERATOR-supplied EXECs from BBPROC.

product address space
See PAS.

profile library Data set consisting of members that contain profile information and cycle
refresh definitions for a terminal session connected to a BBI-SS PAS. Other
members are dynamically created by MAINVIEW applications. There can be
several versions:

• the distributed profile library, called BBPROF
• a site-specific profile library or libraries

These can be

• a library created by AutoCustomization, called SBBPROF
• a library created manually, with a unique name

The site library is a common profile shared by all site users. The terminal
session CLIST creates a user profile automatically if one does not exist; it is
called userid.BBPROF, where userid is your logon ID. User profile libraries
allow each user to specify unique PF keys, CYCLE commands, target system
defaults, a Primary Option Menu, and a unique set of application profiles.

query One of two constituent parts of a view; the other is form. A query defines the
data for a view; a form defines the display format. See also form, view.

real-time data Performance data as it exists at the moment of inquiry. Real-time data is
recorded during the smallest unit of time for data collection. Contrast with
historical data. See also current data and interval data.

Resource Analyzer Online real-time displays used to analyze IMS resources and determine
which are affected by specific workload problems.
BMC Software, Inc., Confidential and Proprietary Information

18 MAINVIEW AutoOPERATOR Advanced Automation Guide

Resource Monitor Online data collection services used to monitor IMS resources and issue
warnings when defined utilization thresholds are exceeded.

row (1) Horizontal component of a view or display comprising all the fields
pertaining to a single device, address space, user, and so on. (2) Horizontal
component of a DB2 table consisting of a sequence of values, one for each
column of the table.

RxD2 Product that provides access to DB2 from REXX. It provides tools to query
the DB2 catalog, issue dynamic SQL, test DB2 applications, analyze
EXPLAIN data, generate DDL or DB2 utility JCL, edit DB2 table spaces,
perform security administration, and much more.

sample cycle Time between data samples.

For the CMF MONITOR Extractor, this is the time specified in the extractor
control statements (usually 1 to 5 seconds).

For real-time data, the cycle is not fixed. Data is sampled each time you press
Enter.

sample library Data set consisting of members each of which contains one of the following
items:

• sample JCL that can be edited to perform specific functions
• macro that is referenced in the assembly of user-written services
• sample user exit routine

There can be several versions:

• the distributed sample library, called BBSAMP
• a site-specific sample library or libraries

These can be

• a library created by AutoCustomization, called UBBSAMP
• a library created manually, with a unique name

sampler Program that monitors a specific aspect of system performance. Includes
utilization thresholds used by the Exception Monitor. The CMF MONITOR
Extractor contains samplers.

SBBPROF See profile library.

scope Subset of an SSI context. The scope could be all the data for the context or a
subset of data within the context. It is user- or site-defined. See SSI context,
target.
BMC Software, Inc., Confidential and Proprietary Information

 Glossary 19

screen definition Configuration of one or more views that have been stored with the SAVEScr
command and assigned a unique name. A screen includes the layout of the
windows and the view, context, system, and product active in each window.

selection view In MAINVIEW products, view displaying a list of available views.

service class workload
Collection of address spaces defined to OS/390 or z/OS. If you are running
Workload Manager (WLM) in goal mode, MAINVIEW for OS/390 creates a
service class workload for each service class that you define through WLM
definition dialogs.

If you are running MVS 4.3 or earlier, or MVS/SP 5.1 or later with WLM in
compatibility mode, OS/390 creates a performance group workload instead
of a service class. See performance group workload.

service objective Workload performance goal, specified in terms of response time for TSO
workloads or turnaround time for batch workloads. Performance group
workloads can be measured by either objective. Composite workload service
objectives consist of user-defined weighting factors assigned to each
constituent workload. For compatibility mode, neither OS/390 nor z/OS
provides any way to measure service.

service point Specification, to MAINVIEW, of the services required to enable a specific
product. Services can be actions, selectors, or views. Each target (for
example, CICS, DB2, or IMS) has its own service point.

The PLEX view lists all the defined service points known to the CAS to
which the terminal session is connected.

service request block (SRB)
Control block that represents a routine to be dispatched. SRB mode routines
generally perform work for the operating system at a high priority. An SRB
is similar to a task control block (TCB) in that it identifies a unit of work to
the system. See also task control block.

service select code Code entered to invoke analyzers, monitors, and general services. This code
is also the name of the individual service.

session Total period of time an address space has been active. A session begins when
monitoring can be performed. If the product address space (PAS) starts after
the job, the session starts with the PAS.

SG-Auto See MAINVIEW SRM SG-Auto.

SG-Control See MAINVIEW SRM SG-Control.
BMC Software, Inc., Confidential and Proprietary Information

20 MAINVIEW AutoOPERATOR Advanced Automation Guide

single system image (SSI)
Feature of the MAINVIEW window environment architecture where you can
view and perform actions on multiple OS/390 or z/OS systems as though they
were a single system. The rows of a single tabular view can contain rows
from different OS/390 or z/OS images.

Skeleton Tailoring Facility
A facility in MAINVIEW AutoOPERATOR that allows skeleton JCL to be
used during job submission. Skeleton JCL can contain variables within the
JCL statements to be substituted with data values at job submission time.
Directive statements can be used in the skeleton JCL to cause the repetition
of a set of skeleton statements. This facility functions similar to the TSO
skeleton tailoring facility.

SRB See service request block.

SSI See single system image.

SSI context Name created to represent one or more targets for a given product. See
context, target.

started task workload
Address spaces running jobs that were initiated programmatically.

statistics interval For MAINVIEW for DB2, cumulative count within a predefined interval (30-
minute default set by the DB2STATS parameter in the distributed BBPARM
member BBIISP00) for an analyzer service DELTA or RATE display.
Specifying the DELTA parameter displays the current value as the difference
between the value sampled by the current analyzer request and the value
sampled at the start of the current interval. Specifying the RATE parameter
displays the current value by minute (DELTA divided by the number of
elapsed minutes).

stem variables A REXX facility, supported in MAINVIEW AutoOPERATOR REXX
EXECs and the Skeleton Tailoring Facility, where variable names end with a
period followed by a number, such as &POOL.1. This configuration allows
each variable to actually represent a table or array of data, with the zero
variable containing the number of entries in the array. For example,
&POOL.0 = 5 would indicate variables &POOL.1 through &POOL.5 exist.

StopX37/II See MAINVIEW SRM StopX37/II.

StorageGUARD See MAINVIEW SRM StorageGUARD.

summary view View created from a tabular view using the Summarize option in view
customization. A summary view compresses several rows of data into a
single row based on the summarize criteria.
BMC Software, Inc., Confidential and Proprietary Information

 Glossary 21

SYSPROG services Component of MAINVIEW for OS/390. Over 100 services that detect,
diagnose, and correct OS/390 or z/OS system problems as they occur.
Accessible from the OS/390 Performance and Control Main Menu. Note that
this component is also available as a stand-alone product MAINVIEW
SYSPROG Services.

system resource See object.

target Entity monitored by one or more MAINVIEW products, such as an OS/390
or z/OS image, an IMS or DB2 subsystem, a CICS region, or related
workloads across systems. See context, scope, SSI context.

target context Single target/product combination. See context.

TASCOSTR MAINVIEW for IMS Offline program that summarizes detail and summary
IMS Resource Utilization Files (IRUFs) to be used as input to the offline
components.

task control block (TCB)
Address space-specific control block that represents a unit of work that is
dispatched in the address space in which it was created. See also service
request block.

TCB See task control block.

terminal session (TS)
Single point of control for MAINVIEW products, allowing data manipulation
and data display and providing other terminal user services for MAINVIEW
products. The terminal session runs in a user address space (either a TSO
address space or a stand-alone address space for EXCP/VTAM access).

TDIR See trace log directory.

threshold Specified value used to determine whether the data in a field meets specific
criteria.

TLDS See trace log data set.

total mode Usage mode in CMFMON wherein certain columns of data reflect the
cumulative value between collection intervals. Invoked by the DELta OFF
command. See also collection interval, delta mode.

trace (1) Record of a series of events chronologically listed as they occur. (2)
Online data collection and display services that track transaction activity
through DB2, IMS, or CICS.
BMC Software, Inc., Confidential and Proprietary Information

22 MAINVIEW AutoOPERATOR Advanced Automation Guide

trace log data set (TLDS)
Single or multiple external VSAM data sets containing summary or detail
trace data for later viewing or printing. The trace log(s) can be defined as
needed or dynamically allocated by the BBI-SS PAS. Each trace request is
assigned its own trace log data set(s).

trace log directory (TDIR)
VSAM linear data set containing one entry for each trace log data set. Each
entry indicates the date and time of data set creation, the current status of the
data set, the trace target, and other related information.

transaction Specific set of input data that initiates a predefined process or job.

Transaction Accountant
MVIMS Offline component that produces cost accounting and user charge-
back records and reports.

TS See terminal session.

TSO workload Workload that consists of address spaces running TSO sessions.

UAS See user address space.

UBBPARM See parameter library.

UBBPROC See procedure library.

UBBSAMP See sample library.

user address space
Runs a MAINVIEW terminal session (TS) in TSO, VTAM, or EXCP mode.

User BBPROF See profile library.

view Formatted data within a MAINVIEW window, acquired from a product as a
result of a view command or action. A view consists of two parts: query and
form. See also form, job activity view, query.

view definition Meaning of data that appears online, including source of data, selection
criteria for data field inclusion and placement, data format, summarization,
context, product, view name, hyperlink fields, and threshold conditions.

view command Name of a view that you type on the COMMAND line to display that view.

view command stack
Internal stack of up to 10 queries. For each command, the stack contains the
filter parameters, sort order, context, product, and time frame that accompany
the view.
BMC Software, Inc., Confidential and Proprietary Information

 Glossary 23

view help Online help describing the purpose of a view. To display view help, place the
cursor on the view name on the window information line and press PF1
(HELP).

window Area of the MAINVIEW screen in which views and resources are presented.
A window has visible boundaries and can be smaller than or equal in size to
the MAINVIEW window area. See active window, alternate window, current
window, MAINVIEW window area.

window information line
Top border of a window. Shows the window identifier, the name of the view
displayed in the window, the system, the scope, the product reflected by the
window, and the tomfooleries for which the data in the window is relevant.
See also window status field.

window number Sequential number assigned by MAINVIEW to each window when it is
opened. The window number is the second character in the window status
field. See also window status field.

window status One-character letter in the window status field that indicates when a window
is ready to receive commands, is busy processing commands, is not to be
updated, or contains no data. It also indicates when an error has occurred in a
window. The window status is the first character in the window status field.
See also window information line, window status field.

window status field Field on the window information line that shows the current status and
assigned number of the window. See also window number, window status.

windows mode Display of one or more MAINVIEW product views on a screen that can be
divided into a maximum of 20 windows. A window information line defines
the top border of each window. Contrast with full-screen mode.

WLM workload In goal mode in MVS/SP 5.1 and later, a composite of service classes.
MAINVIEW for OS/390 creates a workload for each WLM workload
defined in the active service policy.

workflow Measure of system activity that indicates how efficiently system resources are
serving the jobs in a workload.

workload (1) Systematic grouping of units of work (for example, address spaces, CICS
transactions, IMS transactions) according to classification criteria established
by a system administrator. (2) In OS/390 or z/OS, a group of service classes
within a service definition.

workload activity view
Tracks workload activity as the workload accesses system resources. A
workload activity view measures workload activity in terms of resource
consumption and how well the workload activity meets its service objectives.
BMC Software, Inc., Confidential and Proprietary Information

24 MAINVIEW AutoOPERATOR Advanced Automation Guide

Workload Analyzer Online data collection and display services used to analyze IMS workloads
and determine problem causes.

workload definition Workload created through the WKLIST view. Contains a unique name, a
description, an initial status, a current status, and selection criteria by which
address spaces are selected for inclusion in the workload. See Workload
Definition Facility.

Workload Definition Facility
In MAINVIEW for OS/390, WKLIST view and its associated dialogs
through which workloads are defined and service objectives set.

workload delay view
Tracks workload performance as the workload accesses system resources. A
workload delay view measures any delay a workload experiences as it
contends for those resources.

Workload Monitor Online data collection services used to monitor IMS workloads and issue
warnings when defined thresholds are exceeded.

workload objectives
Performance goals for a workload, defined in WKLIST. Objectives can
include measures of performance such as response times and batch
turnaround times.
BMC Software, Inc., Confidential and Proprietary Information

 Glossary 25

BMC Software, Inc., Confidential and Proprietary Information

26 MAINVIEW AutoOPERATOR Advanced Automation Guide

18
Index

Symbols
.RESET BLDL command

using to reset SYSPROC 5-9
@STATASK

utility EXEC 14-4
@TIMER

utility EXEC 14-33

A
AAOEXP00

specifying EXECs to the Priority queue 5-3
specifying multiple EXEC execution 5-4

High queue 5-4
MAXHIGH= 5-4
MAXNORM= 5-4
Normal queue 5-4

advanced techniques for AutoOPERATOR
EXECs 6-1

determining the origin of an EXEC
using IMFORGN 6-7
using IMFORGSS 6-7

externally scheduling an EXEC 6-9
overview 6-1
scheduling messages and EXECs across

targets 6-2
testing EXECs 6-16

ALERT
AOEXEC command 9-14
IMFEXEC command 12-6

ALERT-initiated EXECs
BMC Software, Inc., Confidential and Proprietary Information
example C-10
example with optional parameters C-13
example with parameters 3-11, C-11
example without optional parameters C-12
example without parameters 3-10, C-11
parameters passed 3-10, C-10
potential use 3-10, C-10

AOAnywhere
API implementation 9-4
implementing AOSUBX 9-4
installation requirements 9-3
overview 9-1
sysplex support 9-2

AOEXEC commands
ALERT 9-14

associating help panels 9-29
escalation examples 9-32 to 9-40
managing ALERT queues 9-31
multiline ALERTs 9-29
parameters 9-14 to 9-19
Return Codes for FUNCTION keywords

9-20
TSO variables returned from COUNT

9-28
TSO variables returned from LISTQ

9-28
TSO variables returned from READQ

9-27
coding conventions 9-11
creating multiline ALERTs 9-14
MSG 9-40
NOTIFY 9-42
SELECT 9-44
summary 9-11
 Index 1

SYSINFO 9-47
VDEL 9-51
VDELL 9-62
VGET 9-54
VGETL 9-64
VLST 9-56, 9-56 to 9-57
VLSTL 9-66
VPUT 9-59
VPUTL 9-69

AOSUBX
parameters passed to

EXEC 9-9
TARGET 9-9

parameters passed to AOSUBX
WAIT 9-9

ARRAY INFO
ARYCOLN.n 10-21
ARYCOLW.n 10-21
ARYFILTER 10-20
ARYROWS 10-20

ARYROWS 10-20
assignment statements in CLIST EXECs B-2
assignment statements in REXX EXECs 2-3
asynchronously executing EXECs

See also synchronously executing EXECs
running EXECs under a new thread 5-8
using IMFEXEC SELECT 5-8

AutoOPERATOR
controlling EXEC execution 1-5, 1-8
invoking EXECs 1-3
overview 1-2
passing information 1-5
using CLIST 1-3
using REXX 1-3
using variables in EXECs 1-8

AutoOPERATOR EXECs
IMFEXEC BKPT 13-6
introduction 13-1

B
BKPT

IMFEXEC command 12-32
breakpoints

conditional 13-4
IMFEXEC statements 13-6
operator list 13-16

setting conditional 13-16
suspending programs 13-3
unconditional 13-3

browse
command

EXEC Test panel 13-10
built-in functions in CLIST EXECs B-3
built-in functions in REXX EXECs 2-4

C
CANcel

primary command 13-10
cancelling an EXEC 5-1, 5-12

See also controlling EXEC execution
using .CANCEL 5-12

CANEXEC
utility EXEC 14-5

CHAP
IMFEXEC command 12-33

CICS 12-34 to 12-83
Command Parameters

IMFEXEC command 12-36
IMFEXEC command 12-34

CICS ALLOC
IMFEXEC command 12-40

CICS ALTER
IMFEXEC command 12-41

CICS ALTERVS
IMFEXEC command 12-48

CICS AQUIRE
IMFEXEC command 12-38

CICS CEMT
IMFEXEC command 12-49

CICS CHAP
IMFEXEC command 12-51

CICS CICSKEY
IMFEXEC command 12-52

CICS CLOSE
IMFEXEC command 12-53

CICS CONN
IMFEXEC command 12-54

CICS DISABLE
IMFEXEC command 12-55

CICS DROP
IMFEXEC command 12-57

CICS DUMPDB
BMC Software, Inc., Confidential and Proprietary Information

2 MAINVIEW AutoOPERATOR Advanced Automation Guide

IMFEXEC command 12-58
CICS ENABLE

IMFEXEC command 12-59
CICS FREE

IMFEXEC command 12-61
CICS INSERVE

IMFEXEC command 12-62
CICS ISOLATE

IMFEXEC command 12-63
CICS KILL

IMFEXEC command 12-64
CICS KILL TERM

IMFEXEC command 12-65
CICS LOAD

IMFEXEC command 12-67
CICS NEWCOPY

IMFEXEC command 12-68
CICS OPEN

IMFEXEC command 12-69, 12-70
CICS OUTSERVE

IMFEXEC command 12-70
CICS PURGE

IMFEXEC command 12-71
CICS QUERY

IMFEXEC command 12-73
CICS RECOVERDB

IMFEXEC command 12-79
CICS RELEASE

IMFEXEC command 12-80
CICS SPURGE

IMFEXEC command 12-81
CICS STARTDB

IMFEXEC command 12-82
CICS STOPDB

IMFEXEC command 12-83
CICSTRAN

IMFEXEC command 12-84
CLIST EXEC conventions

assignment statements B-2
built-in functions B-3
conditional statements B-3
control statements B-2
expressions B-1
operators B-1
TSO command restrictions B-4
unsupported TSO commands B-5

CLIST EXECs C-1
ALERT-initiated EXECs C-10

defining the language C-1, C-2
description C-1
documentation box C-4
documenting the EXEC C-1, C-4
End-of-Memory-Initiated EXECs C-25
EXEC-inititated EXECs C-21
externally initiated EXECs C-23
passing data C-1, C-2
Rule-initiated EXECs C-7
time-initiated EXECs C-17
user-initiated EXECs C-15
writing logic C-2, C-5

CLIST syntax
See CLIST EXEC conventions
See REXX EXEC conventions

clock
TOD (time of day) 7-4

CMD
IMFEXEC command 12-85, 12-85 to

12-102
CMDSHOW ON/OFF

primary command 13-10
CNTL

IMFEXEC command 12-103
using PERLIM(xx) 5-10
using TIMLIM(xx) 5-10

CNVSECS
utility EXEC 14-38

CNVTIME
utility EXEC 14-39

coding IMFEXECs
condition codes 12-4
general conventions 12-3
quotation mark usage 12-4
REXX coding 12-3
variable names 12-4

command restrictions in REXX EXECs 2-8
common function EXECs

RXBKLINE 7-2
RXQCHAR 7-2
RXQNUM 7-2
RXSAMPEX 7-2
RXSETSQL 7-3
RXVODS 7-3

compound variable
ISPF dialog 7-6

conditional breakpoints
BOOLEAN operators 13-4
BMC Software, Inc., Confidential and Proprietary Information

 Index 3

command
EXEC Test panel 13-10

control panel 13-14
halting EXECs 13-14
setting capability 13-14
suspending programs 13-4

conditional statements in CLIST EXECs B-3
conditional statements in REXX EXECs 2-3
CONNECT

IMFEXEC ARRAY command 10-6
IMFEXEC MV command 11-10

CONTEXT
IMFEXEC MV command 11-12

CONTinue
primary command 13-10

control statements in CLIST EXECs B-2
control statements in REXX EXECs 2-2, 2-3
controlling EXEC execution 5-1, 5-10 to 5-16

See also scheduling EXECs
displaying status of an EXEC 5-11

using .DISPLAY 5-11
setting time and CPU limits 5-10

overriding PEREXLIM 5-10
overriding TIMEXLIM 5-10
using PEREXLIM in AAOEXP00 5-10
using PERLIM(xx) 5-10
using TIMEXLIM in AAOEXP00 5-10
using TIMLIM(xx) 5-10

using BBI control commands
cancelling 5-10
disabling 5-10
enabling 5-10
using .CANCEL 5-12
using .START 5-12
using .STOP 5-12

CONVSTCK
convert time of day clock

special function 7-4
CREATE

IMFEXEC ARRAY command 10-9
cross-system scheduling

ALERTs 6-2
EXECs 6-2
IMF or MAINVIEW for DB2 commands

6-2
messages 6-2

CTOD
clock time of day

special function 7-4

D
defining targets

BBIJNT00 6-1
BBINOD00 6-1

DELETE
IMFEXEC ARRAY command 10-11

DELVARS
utility EXEC 14-5

determining the origin of an EXEC 6-1, 6-7
using IMFORGN 6-7

disabling an EXEC 5-12
See also controlling EXEC execution
using .STOP 5-12

DISC
IMFEXEC ARRAY command 10-13

displaying source statements
EXEC test panel

using VAROFF command 13-12
displaying the status of an EXEC 5-11

using .DISPLAY 5-11
displaying variables

line command 13-12
primary command 13-12
TSO list 13-12

documentation box
CLIST EXEC C-4
example 3-5, C-4
REXX EXEC 3-5

DOM
IMFEXEC command 12-105

DROP
global variable environment 7-5

E
enabling an EXEC 5-12

See also controlling EXEC execution
using .START 5-12

End-of-Memory-initiated EXECs 3-24
example 3-25
parameters passed 3-25
potential use 3-24

End-of-Memory-Initiated-EXECs C-25
BMC Software, Inc., Confidential and Proprietary Information

4 MAINVIEW AutoOPERATOR Advanced Automation Guide

parameters passed C-25
potential use C-25

EXEC parameter
passed to AOSUBX 9-9
passed to IMFSUBEX 6-9, 6-10

EXEC test control display
discussion of 13-8

EXEC test control panel
advanced format screen 13-9
field descriptions 13-9

EXEC test OSPI panel
columns descriptions 13-21

EXEC testing facility
accessing 13-7
breakpoints 13-3
conditional breakpoints 13-3
controlling execution 13-3
debugging EXECs 13-2
EXEC positions 13-8
full-screen interactive interface 13-2
line commands 13-12
maintaining delete requests 13-5
permanent data storage 13-21
SAVE feature 13-7
test trace panel 13-14
tracing EXECs 13-6
unconditional breakpoints 13-4
VGET command 13-5

EXEC testing option commands
C-conditional breakpoints 13-10
O-OSPI session display 13-10
V-variable access 13-10

EXEC-initiated EXECs 3-19
example 3-20
parameters passed 3-20
potential use 3-19

EXEC-inititated EXECs C-21
example C-22
parameters passed C-21
potential use C-21

EXECs
common function 7-2

RXBKLINE 7-2
RXQCHAR 7-2
RXQNUM 7-2
RXSAMPEX 7-2
RXSETSQL 7-3
RXVODS 7-3

EXIT
IMFEXEC command 12-107

EXPAND
primary command 13-10

expressions in CLIST EXECs B-1
expressions in REXX EXECs 2-1
externally initiated EXECs 3-22, C-23

example 3-23, C-24, C-26
parameters passed 3-23
pararmeters passed C-23
potential use 3-22, C-23

externally invoking EXECs 6-1
determining IMFORGN 6-8
determining return codes 6-11
parameters passed to AOSUBX

EXEC 9-9
TGTSS 9-9
WAIT 9-9

parameters passed to IMFSUBEX 6-9
EXEC 6-10
MSGLVLI 6-10
ORIGIN 6-10
SS 6-10
TARGET 6-10
VTS 6-11
WAIT 6-10

submitting 6-9
from a job step 6-13
from a TSO session 6-14
from within another program 6-15

using IMFSUBEX 6-9

F
F2C

floating point conversion
special function 7-4

field descriptions
EXEC test control panel

EXEC 13-9
ID 13-9

FIND
IMFEXEC ARRAY command 10-15

Find
primary command 13-10

floating point conversion 7-4
FORCE 13-10
BMC Software, Inc., Confidential and Proprietary Information

 Index 5

primary command 13-10
FUNC

special function 7-3

G
GBLVAR

global variable environment 7-5
DROP 7-5
GETV 7-5
SETV 7-5
UPDV 7-5

special function 7-5
GET

IMFEXEC ARRAY command 10-18
GETDATA

IMFEXEC MV command 11-14
GETV

global variable environment 7-5

H
HB

IMFEXEC command 12-108
HELP PANEL

ALERT 9-38, 12-30
CICS 12-83
creating HELP panel for ALERTs 9-16,

12-8
help panels 9-29, 12-21
SELECT

completion codes for WAIT(YES)
12-140

user-written programs 12-140

I
IMFACCTG

TSO variables 4-7
IMFALID

TSO variables 4-7
IMFALPRI

TSO variables 4-7
IMFALQID

TSO variables 4-7
IMFALRM

TSO variables 4-7
IMFC

IMFEXEC command 12-109
IMFC SET PRG=CALLX

IMFEXEC command 12-113
IMFC SET REQ=CALLX

IMFEXEC command 12-115
IMFCC

TSO variables 4-7
IMFCNTXT

TSO variables 4-7
IMFCONID

TSO variables 4-7
IMFCONNM

TSO variables 4-8
IMFDAY

TSO variables 4-8
IMFDOMID

TSO variables 4-8
IMFEID

TSO variables 4-8
IMFENAME

TSO variables 4-8
IMFEVFRD

TSO variables 4-9
IMFEXEC ARRAY

overview 10-1
IMFEXEC ARRAY commands

CONNECT 10-6
CREATE 10-9
DELETE 10-11
DISC 10-13
FIND 10-15
GET 10-18
INFO 10-20
INSERT 10-23
LIST 10-25
PUT 10-27
SAVE 10-29
SET 10-31
SETVIEW 10-33
SORT 10-36

IMFEXEC BKPT
setting breakpoints 13-6

IMFEXEC commands 12-1
ALERT 12-6

FUNCTION keywords 12-12
BMC Software, Inc., Confidential and Proprietary Information

6 MAINVIEW AutoOPERATOR Advanced Automation Guide

TSO variables returned from COUNT
12-20

TSO variables returned from LISTQ
12-20

TSO variables returned from READQ
12-19

BKPT 12-32
CHAP 12-33
CICS 12-34, 12-34 to 12-83

ACQUIRE 12-38
ALLOC 12-40
ALTER 12-41
ALTERVS 12-48
CEMT 12-49
CHAP 12-51
CICS dependent services 12-35
CICS independent services 12-35
CICSKEY 12-52
CLOSE 12-53
Command Parameters 12-36
condition codes 12-35, 12-159
CONN 12-54
DISABLE 12-55
DROP 12-57
DUMPDB 12-58
ENABLE 12-59
FREE 12-61
INSERVE 12-62
ISOLATE 12-63
KILL TASK 12-64
KILL TERM 12-64
LOAD 12-67
NEWCOPY 12-68
OPEN 12-69
OUTSERVE 12-70
PURGE 12-71
QUERY 12-73
RECOVERDB 12-79
RELEASE 12-80
SPURGE 12-81
STARTDB 12-82
STOPDB 12-83

CICS ALLOC 12-40
CICS ALTER 12-41
CICS ALTERVS 12-48
CICS AQUIRE 12-38
CICS CEMT 12-49
CICS CHAP 12-51

CICS CICSKEY 12-52
CICS CLOSE 12-53
CICS CONN 12-54
CICS DISABLE 12-55
CICS DROP 12-57
CICS DUMPDB 12-58
CICS ENABLE 12-59
CICS FREE 12-61
CICS INSERVE 12-62
CICS ISOLATE 12-63
CICS KILL 12-64
CICS KILL TERM 12-65
CICS LOAD 12-67
CICS NEWCOPY 12-68
CICS OPEN 12-69, 12-70
CICS OUTSERVE 12-70
CICS PURGE 12-71
CICS QUERY 12-73
CICS RECOVERDB 12-79
CICS RELEASE 12-80
CICS SPURGE 12-81
CICS STARTDB 12-82
CICS STOPDB 12-83
CICSTRAN 12-84
CMD 12-85

BBI version with response 12-87
BBI version without response 12-86
IMS version with response 12-99
IMS version without response 12-96
MVS/JES version with response 12-90

CNTL 12-103
coding conventions 12-3
condition codes 12-4
creating multi-line ALERTs 12-7
DOM 12-105
EXIT 12-107
HB 12-108
IMFC 12-109
IMFC SET PRG=CALLX|ALL 12-113
IMFC SET REQ=CALLX 12-115
IMSTRAN 12-117
JES3CMD 12-119
JESALLOC 12-120
JESSUBM 12-122
LOGOFF 12-125
LOGON 12-127
MSG 12-129
NOTIFY 12-130
BMC Software, Inc., Confidential and Proprietary Information

 Index 7

POST 12-131
quotation mark usage 12-4
RECEIVE 12-133
RES 12-134
REXX coding 12-3
REXX/CLIST formats 13-4
SCAN 12-136
SELECT 12-140
SEND 12-144
SESSINF 12-146
SETTGT 12-148
SHARE 12-150
STDTIME 12-153
SUBMIT 12-155
TAILOR 12-157
TAILOR Processing 12-160
TRANSMIT 12-171
TYPE 12-173
variable names 12-4
VCKP 12-175
VDCL 12-177
VDEL 12-179
VDELL 12-182
VDEQ 12-184
VENQ 12-185
VGET 12-187
VGETL 12-191
VLST 12-193
VLSTL 12-193, 12-195
VPUT 12-197
VPUTL 12-201
WAIT 12-203
WAITLIST 12-205
WTO 12-208
WTOR 12-210

IMFEXEC MV commands 11-1
CONNECT 11-10
CONTEXT 11-12
GETDATA 11-14
RELEASE 11-17
TRACE 11-18
VIEW 11-19

IMFEXEC statements 13-3
showing EXEC history 13-14

IMFGROUP
TSO variables 4-9

IMFJCLAS
TSO variables 4-9

IMFJNUM
TSO variables 4-9

IMFJTYPE
TSO variables 4-9

IMFLPROD
TSO variables 4-9

IMFLTYPE
TSO variables 4-9

IMFLUSER
TSO variables 4-10

IMFMPFAU
TSO variables 4-10

IMFMPFSP
TSO variables 4-10

IMFMSTYP
TSO variables 4-10

IMFNOL
TSO variables 4-10

IMFOASID
TSO variables 4-10

IMFODATE
TSO variables 4-10

IMFODESC
TSO variables 4-10

IMFOJOB
TSO variables 4-11

IMFOQID
TSO variables 4-11

IMFORGN 6-8
TSO variables 4-11

IMFORGSS 6-7
TSO variables 4-11

IMFOROUT
TSO variables 4-8, 4-12

IMFOTIME
TSO variables 4-12

IMFPCMD
TSO variables 4-12

IMFPOST
TSO variables 4-12

IMFPRIO
TSO variables 4-12

IMFRC
TSO variables 4-12

IMFREPLY
TSO variables 4-12

IMFRLFRD
TSO variables 4-12
BMC Software, Inc., Confidential and Proprietary Information

8 MAINVIEW AutoOPERATOR Advanced Automation Guide

IMFRLID
TSO variables 4-12

IMFRLMAT
TSO variables 4-12

IMFRLSET
TSO variables 4-12

IMFRLSTA
TSO variables 4-12

IMFRUSER
TSO variables 4-13

IMFSCOPE
TSO variables 4-13

IMFSTOKN
TSO variables 4-13

IMFSUBEX 6-1
determining return codes 6-11
parameters passed to IMFSUBEX

EXEC 6-10
MSGLVLI 6-10
ORIGIN 6-10
SS 6-10
TARGET 6-10
VTS 6-11
WAIT 6-10

submitting 6-13
from a job step 6-13
from a TSO session 6-14
from within another program 6-15

using 6-9
IMFSYSID

TSO variables 4-13
IMFTEXT

TSO variables 4-13
IMFTOKEN

TSO variables 4-13
IMFVIEW

TSO variables 4-13
IMFWTCON

TSO variables 4-13
IMFWTDOM

TSO variables 4-13
IMFXOJOB

TSO variables 4-11
implementing an EXEC 5-9

See also controlling an EXEC
IMSTRAN

IMFEXEC command 12-117
INFO

IMFEXEC ARRAY command 10-20
INSERT

IMFEXEC ARRAY command 10-23
introduction 13-1
invoking EXECs

completion codes 12-143
IMFCC and IMFRC 12-143

register contents 12-142
serialization 12-142
using IMFUxxxx prefix 12-141
using other programming languages 12-141

assembler 12-141
COBOL 12-141
PL/I 12-141

ISPF dialog
compound variable 7-6

J
JES2DI

utility EXEC 14-36
JES2DQ

utility EXEC 14-37
JES3CMD

IMFEXEC command 12-119
JESALLOC

IMFEXEC command 12-120
JESSUBM

IMFEXEC command 12-122

L
LASTCC

TSO variables 4-14
line commands

A - After breakpoint 13-12
B - Before breakpoint 13-12
delete 13-19
description of 13-12
O - Off removes breakpoints 13-12
select 13-19

LIST
IMFEXEC ARRAY command 10-25

LOCAL variables 4-7, 4-18, 4-19, 4-20
See also variables
using 4-17
BMC Software, Inc., Confidential and Proprietary Information

 Index 9

Locate
primary command 13-10

logical states
breakpoints 13-3

LOGOFF
IMFEXEC command 12-125

LOGON
IMFEXEC command 12-127

M
MAINVIEW API

using 11-1
managing EXECs

across BBI-SS PASs and targets 6-2
examples 6-3

MAXCC
TSO variables 4-14

MSG
AOEXEC command 9-40
IMFEXEC command 12-129

MSGLVLI
passed to IMFSUBEX 6-10

multi-threading EXECs 4-27
to Normal queue 5-4
to Priority queue 5-4

MUT001C
utility EXEC 14-6

N
Normal queue 5-1

defining threads 5-1
multi-threading EXECS 5-4
scheduling EXECs 5-2
using MAXHIGH= 5-4
using MAXNORM= 5-4

NOTIFY
AOEXEC command 9-42
IMFEXEC command 12-130

O
OFF

primary command 13-10
Open Systems Procedural Interface

See also OSPI
operators

description of 13-15
operators in CLIST EXECs B-1
operators in REXX EXECs 2-1
option commands

EXEC testing panel
B - browse EXEC output 13-10
C - conditional breakpoints 13-10
O - OSPI session display 13-10
V - variable access 13-10

origin of EXECs 6-7
determining 6-1

using IMFORGN 6-8
using IMFORGSS 6-7

ORIGIN parameter
passed to IMFSUBEX 6-10

OSPI 8-1
accessing the Scripting application 8-5
command

EXEC Test panel 13-10
customizing OSPI 8-3
customizing OSPI EXECs 8-14
debugging 8-17
disconnect feature 8-16
establishing a session 8-3
exchanging data 8-4
EXEC sessions 8-3
hot key 8-6
interacting with the Scripting application 8-8
interacting with VTAM applications 8-1
OSPI control variables 8-16
OSPISNAP 8-18
overview 8-1
receiving data 8-11
script development panel 8-6
scripting sessions 8-3
session termination panel 8-14
terminating a session 8-4
using OSPI 8-2
using passwords 8-17

OSPI EXECs
discussion of 13-5
example 13-6
testing sessions 13-21
BMC Software, Inc., Confidential and Proprietary Information

10 MAINVIEW AutoOPERATOR Advanced Automation Guide

P
P2C

unpack
special function 7-5

passing parameters to EXECs 3-1, C-1
pool field 13-17

adding values 13-20
values list 13-17

POOLS
literals 13-16
profile 13-5
profile test 13-5
shared 13-5
shared test 13-5

POST
IMFEXEC command 12-131

primary commands
add 13-19

Priority queue 5-1
defining threads 5-1
multi-threading EXECS 5-4
scheduling EXECs 5-2
using AAOEXP00 5-3

PROFILE pool 4-21
See also variables
using 4-17

programming formats
IBM REXX 13-1
IBM TSO CLIST 13-1

PUBLISH parameter
ALERT command 12-10
examples 9-38

PUT
IMFEXEC ARRAY command 10-27

Q
QAOREL

SHARED variables 4-19
QGMADDR

SHARED variables 4-20
QGMLCLHB

SHARED variables 4-20
QGMLPORT

SHARED variables 4-20
QGMMSGL

SHARED variables 4-20
QGMNAME

SHARED variables 4-20
QGMRTC

SHARED variables 4-20
QGMRTI

SHARED variables 4-20
QGMSTAT

SHARED variables 4-20
QGMTGTHB

SHARED variables 4-20
QGMTRAPP

SHARED variables 4-20
QGMTRGME

SHARED variables 4-20
QGMTRSEC

SHARED variables 4-20
QGMWND

SHARED variables 4-20
QIMFID

SHARED variables 4-19
QIMGSTA

SHARED variables 4-20
QIMGSUF

SHARED variables 4-20
QIMSID

SHARED variables 4-20
QIMSNAME

SHARED variables 4-20
QIMSSTA

SHARED variables 4-20
QJNLSTA

SHARED variables 4-20
QJNLSUF

SHARED variables 4-20
QSMFID

SHARED variables 4-20
QSSNAME

SHARED variables 4-20

R
RASM

SYSPROG utility EXEC 14-8
RC

TSO variables 4-14
RCPU
BMC Software, Inc., Confidential and Proprietary Information

 Index 11

SYSPROG utility EXEC 14-10
RCSS

SYSPROG utility EXEC 14-11
RECEIVE

IMFEXEC command 12-133
RELEASE

IMFEXEC MV command 11-17
RENQ

SYSPROG utility EXEC 14-12
RES

IMFEXEC command 12-134
RESULT

TSO variables 4-14
return codes

See also each IMFEXEC command
statement

from IMFSUBEX 6-11
REXX EXEC conventions

assignment statements 2-3
built-in functions 2-4
command restrictions 2-8
conditional statements 2-3
control statements 2-2
expressions 2-1
operators 2-1
TSO/E functions 2-6
TSO/E REXX commands 2-7
unsupported TSO commands 2-8

REXX EXECs 3-1
ALERT-initiated EXECs 3-9
defining the language 3-1, 3-2
description 3-1
documentation box 3-5
documenting the EXEC 3-1, 3-5
EXEC-initiated EXECs 3-19
externally initiated EXECs 3-22
passing data 3-1, 3-2
Rule-initiated EXECs 3-7
time-initiated EXECs 3-16
user-initiated EXECs 3-14
writing logic 3-2, 3-6

REXX/CLIST formats
AutoOPERATOR EXECs 13-2
IMFEXEC commands 13-2

RIO
SYSPROG utility EXEC 14-13

RMDE
SYSPROG utility EXEC 14-14

RMON
SYSPROG utility EXEC 14-15

RMPA
SYSPROG utility EXEC 14-16

RMTP
SYSPROG utility EXEC 14-17

RPAG
SYSPROG utility EXEC 14-18

RPRO
SYSPROG utility EXEC 14-19

RREP
SYSPROG utility EXEC 14-20

RREPRX
SYSPROG utility EXEC 14-21

RRES
SYSPROG utility EXEC 14-23

RRSM
SYSPROG utility EXEC 14-24

RSPA
SYSPROG utility EXEC 14-25

RSTA
SYSPROG utility EXEC 14-28

RSYS
SYSPROG utility EXEC 14-30

RTPI
SYSPROG utility EXEC 14-30

RTSU
SYSPROG utility EXEC 14-32

Rule-initiated EXECs 3-7, C-7
example 3-9, C-8
parameters passed 3-7, C-7
potential use 3-7, C-7

RUN
primary command 13-10

running EXECs
See controlling EXEC execution or

scheduling EXECs
RXBKLINE

common function EXEC 7-2
RXQCHAR

common function EXEC 7-2
RXQNUM

common function EXEC 7-2
RXSAMPEX

common function EXEC 7-2
RXSETSQL

common function EXEC 7-3
RXVODS
BMC Software, Inc., Confidential and Proprietary Information

12 MAINVIEW AutoOPERATOR Advanced Automation Guide

common function EXEC 7-3

S
SAVE

IMFEXEC ARRAY command 10-29
SAVE feature

saving TSO variables 13-7
SCAN

IMFEXEC command 12-136
scheduling EXECs 5-1, 6-1

See also controlling EXEC execution
across BBI-SS PASs and targets 6-2
defining threads 5-1
examples 6-3
using IMFEXEC commands 6-2
using Normal queue 5-2

multi-threading 5-4
using Priority queue 5-2

multi-threading 5-4
using AAOEXP00 5-3
using IMFEXEC SELECT PRI(HI) 5-3

SELECT 5-8
AOEXEC command 9-44
IMFEXEC command 12-140
invoking EXECs synchronously 5-8 to 5-9
using WAIT(YES) 5-8

SEND
IMFEXEC command 12-144

SESINF
IMFEXEC command 12-146

SESSINF
IMFEXEC command 12-146

SET
IMFEXEC ARRAY command 10-31

SETTGT
IMFEXEC command 12-148

setting EXEC CPU limits
See also setting EXEC time limits
using TIMEXLIM in AAOEXP00 5-10
using TIMLIM(xx) 5-10

setting EXEC time limits
See also setting EXEC CPU limits
using PEREXLIM in AAOEXP00 5-10
using PERLIM(xx) 5-10

SETV
global variable environment 7-5

SETVIEW
IMFEXEC ARRAY command 10-33

SHARE
IMFEXEC command 12-150

SHARED variables 4-18
See also variables
QAOREL 4-19
QGMADDR 4-20
QGMLCLHB 4-20
QGMLPORT 4-20
QGMMSGL 4-20
QGMNAME 4-20
QGMRTC 4-20
QGMRTI 4-20
QGMSTAT 4-20
QGMTGTHB 4-20
QGMTRAPP 4-20
QGMTRGME 4-20
QGMTRSEC 4-20
QGMWND 4-20
QIMFID 4-19
QIMGSTA 4-20
QIMGSUF 4-20
QIMSID 4-20
QIMSNAME 4-20
QIMSSTA 4-20
QJNLSTA 4-20
QJNLSUF 4-20
QSMFID 4-20
QSSNAME 4-20
using 4-18

SIGL
TSO variables 4-14

SKIP
primary command 13-10

SORT
IMFEXEC ARRAY command 10-36

source statements
displaying 13-12
tracing interpreted 13-14

special functions
CONVSTCK 7-4
CTOD 7-4
F2C 7-4
GBLVAR 7-5
P2C 7-5
UENV 7-6
VARSPF 7-6
BMC Software, Inc., Confidential and Proprietary Information

 Index 13

WAITSEC 7-6
SS parameter

passed to IMFSUBEX 6-10
STDTIME

IMFEXEC command 12-153
STEP

primary command 13-10
SUBMIT

IMFEXEC command 12-155
utility EXEC 14-7

SUBMITOR
utility EXEC 14-8

synchronously executing EXECs
See also asynchronously executing EXECs
running EXECs under the same thread 5-8
using IMFEXEC SELECT WAIT(YES) 5-8

syntax notation 1-xxiv
SYSASIS

TSO variables 4-14
SYSCONLIST

TSO variables 4-14
SYSCPU

TSO variables 4-16
SYSDATE

TSO variables 4-16
SYSDLM

TSO variables 4-16
SYSDVAL

TSO variables 4-14
SYSENV

TSO variables 4-16
SYSFLUSH

TSO variables 4-14
SYSHSM

TSO variables 4-16
SYSICMD

TSO variables 4-16
SYSINFO

AOEXEC command 9-47
SYSISPF

TSO variables 4-16
SYSJDATE

TSO variables 4-16
SYSLIST

TSO variables 4-15
SYSLRACF

TSO variables 4-16
SYSLTERM

TSO variables 4-16
SYSMSG

TSO variables 4-15
SYSNEST

TSO variables 4-16
SYSOUTLINE

TSO variables 4-15
SYSOUTTRAP

TSO variables 4-15
SYSPCMD

TSO variables 4-16
SYSPROC

TSO variables 4-16
SYSPROG service fields and variables A-1 to

A-7
SYSPROMPT

TSO variables 4-15
SYSRACF

TSO variables 4-16
SYSSCAN

TSO variables 4-15
SYSSCMD

TSO variables 4-16
SYSSDATE

TSO variables 4-16
SYSSRV

TSO variables 4-16
SYSSTIME

TSO variables 4-16
SYSSYMLIST

TSO variables 4-15
SYSTIME

TSO variables 4-16
SYSTSOE

TSO variables 4-16
SYSWTERM

TSO variables 4-16

T
TAILOR

IMFEXEC command 12-157
condition codes 12-159
examples 12-159, 12-163 to 12-170
parameters 12-157

TAILOR Processing
IMFEXEC command 12-160
BMC Software, Inc., Confidential and Proprietary Information

14 MAINVIEW AutoOPERATOR Advanced Automation Guide

target 6-1
defining

BBIJNT00 6-1
BBINOD00 6-1

TARGET parameter
passed to AOSUBX 9-9
passed to IMFSUBEX 6-10

testing
access to an EXEC 13-7
debugging example 13-3

testing EXECs 6-1, 6-16
using CONTROL CONLIST SYMLIST

6-19
using IMFEXEC CNTL NOCMD 6-16
using IMFEXEC CNTL NOCMD GLOBAL

6-18
using SHARED variables 6-20
without issuing WTOs 6-21

time-initiated EXECs 3-16, C-17
example C-19
parameters passed 3-16, C-18
potential use 3-16, C-17

TOD
time of day clock 7-4

TRACE
IMFEXEC MV command 11-18

tracing interpreted source statements
showing EXEC history 13-14

TRANSMIT
IMFEXEC command 12-171

TSO command restrictions in CLIST EXECs
B-4

TSO variables
&IMFEROUT 4-8
&IMFXOJOB 4-11
See also variables
creating 4-7
IMFACCTG 4-7
IMFALID 4-7
IMFALPRI 4-7
IMFALQID 4-7
IMFALRM 4-7
IMFCC 4-7
IMFCNTXT 4-7
IMFCONID 4-7
IMFCONNM 4-8
IMFDAY 4-8
IMFDOMID 4-8

IMFEID 4-8
IMFENAME 4-8
IMFEVFRD 4-9
IMFGROUP 4-9
IMFJCLAS 4-9
IMFJNUM 4-9
IMFJTYPE 4-9
IMFLPROD 4-9
IMFLTYPE 4-9
IMFLUSER 4-10
IMFMPFAU 4-10
IMFMPFSP 4-10
IMFMSTYP 4-10
IMFNOL 4-10
IMFOASID 4-10
IMFODATE 4-10
IMFODESC 4-10
IMFOJOB 4-11
IMFOQID 4-11
IMFORGN 4-11
IMFORGSS 4-11
IMFOROUT 4-12
IMFOTIME 4-12
IMFPCMD 4-12
IMFPOST 4-12
IMFPRIO 4-12
IMFRC 4-12
IMFREPLY 4-12
IMFRLFRD 4-12
IMFRLID 4-12
IMFRLMAT 4-12
IMFRLSET 4-12
IMFRLSTA 4-12
IMFRUSER 4-13
IMFSCOPE 4-13
IMFSTOKN 4-13
IMFSYSID 4-13
IMFTEXT 4-13
IMFTOKEN 4-13
IMFVIEW 4-13
IMFWTCON 4-13
IMFWTDOM 4-13
modifiable TSO variables 4-13

&LASTCC 4-14
&MAXCC 4-14
&SYSASIS 4-14
&SYSCONLIST 4-14
&SYSDVAL 4-14
BMC Software, Inc., Confidential and Proprietary Information

 Index 15

&SYSFLUSH 4-14
&SYSLIST 4-15
&SYSMSG 4-15
&SYSOUTLINE 4-15
&SYSOUTTRAP 4-15
&SYSPROMPT 4-15
&SYSSCAN 4-15
&SYSSYMLIST 4-15
RC 4-14
RESULT 4-14
SIGL 4-14

non-modifiable TSO variables 4-15, 4-16
&SYSCPU 4-16
&SYSDATE 4-16
&SYSDLM 4-16
&SYSENV 4-16
&SYSHSM 4-16
&SYSICMD 4-16
&SYSISPF 4-16
&SYSJDATE 4-16
&SYSLRACF 4-16
&SYSLTERM 4-16
&SYSNEST 4-16
&SYSPCMD 4-16
&SYSPROC 4-16
&SYSRACF 4-16
&SYSSCMD 4-16
&SYSSDATE 4-16
&SYSSRV 4-16
&SYSSTIME 4-16
&SYSTIME 4-16
&SYSTSOE 4-16
&SYSWTERM 4-16

using 4-17
TSO/E functions 2-6
TSO/E REXX commands 2-7
TYPE

IMFEXEC command 12-173

U
UENV

hcename 7-6
pgm 7-6

special function 7-6
unconditional breakpoints 13-3

IMFEXEC commands 13-4

suspending programs 13-4
unpack

P2C
special function 7-5

unsupported REXX functions
XRANGE 2-8

unsupported TSO commands in CLIST EXECs
B-5

unsupported TSO commands in REXX EXECs
Halt Interpretation (HI) 2-8
Halt Typing (HT) 2-8
Resume Typing (RT) 2-8
Trace End (TE) 2-8
Trace Start (TS) 2-8

UPDV
global variable environment 7-5

user-initiated EXECs 3-14, C-15
example 3-15, 3-18, C-16
parameters passed 3-14, C-15
potential use 3-14, C-15

utility EXECs 14-1 to 14-40
@STATASK 14-4
@TIMER 14-33
CANEXEC 14-5
CNVSECS 14-38
CNVTIME 14-39
DELVARS 14-5
JES2DI 14-36
JES2DQ 14-37
MUT001C 14-6
return codes 14-1
SUBMIT 14-7
SUBMITOR 14-8
SYSPROG utility EXECs

naming convention 14-1
RASM 14-8
RCPU 14-10
RCSS 14-11
RENQ 14-12
RIO 14-13
RMDE 14-14
RMON 14-15
RMPA 14-16
RMTP 14-17
RPAG 14-18
RPRO 14-19
RREP 14-20
RREPRX 14-21
BMC Software, Inc., Confidential and Proprietary Information

16 MAINVIEW AutoOPERATOR Advanced Automation Guide

RRES 14-23
RRSM 14-24
RSPA 14-25
RSTA 14-28
RSYS 14-30
RTPI 14-30
RTSU 14-32

V
variable pools 4-1

See also variables
retrieving data 4-25
saving data 4-23
using the LOCAL pool 4-17
using the PROFILE pool 4-21
using the SHARED pool 4-18
using the TSO pool 4-6

variable selection panel
name field 13-17
pool field 13-17

variable-name
conditional breakpoints panel 13-14

variables 4-1, 7-5
add/update panel 13-19
commands 13-19
compound 7-6
creating 13-19
GLOBAL 4-1

See also SHARED or PROFILE
hex on/off command 13-20
LOCAL

See also LOCAL variables
using 4-6

manipulating
using IMFEXEC VDCL 4-3
using IMFEXEC VDEL 4-3
using IMFEXEC VGET 4-3
using IMFEXEC VPUT 4-3

modifying 13-19
multi-threading EXECs 4-27
overview 4-1
PROFILE 4-1

See also PROFILE variables
using 4-21

retrieving data 4-25
saving data 4-23

SHARED 4-1
See also SHARED variables
list of 4-19
using 4-18

sharing data 4-27
TSO

See also TSO variables
list of 4-7
using 4-7

VARON/VAROFF
primary command 13-10

VARSPF
special function 7-6

VCKP
IMFEXEC command 12-175

VDCL
IMFEXEC command 12-177

VDEL
AOEXEC command 9-51
IMFEXEC command 12-179

VDELL
AOEXEC command 9-62
IMFEXEC command 12-182

VDEQ
IMFEXEC command 12-184

VENQ
IMFEXEC command 12-185

VGET
AOEXEC command 9-54
IMFEXEC command 12-187

VGETL
AOEXEC command 9-64
IMFEXEC command 12-191

VIEW
IMFEXEC MV command 11-19

VLST
AOEXEC command 9-56
IMFEXEC command 12-193

VLSTL
AOEXEC command 9-66
IMFEXEC command 12-193, 12-195

VPUT
AOEXEC command 9-59
IMFEXEC command 12-197

VPUTL
AOEXEC command 9-69
IMFEXEC command 12-201

VTS parameter
BMC Software, Inc., Confidential and Proprietary Information

 Index 17

passed to IMFSUBEX 6-11

W
WAIT

IMFEXEC command 12-203
WAIT parameter

passed to AOSUBX 9-9
passed to IMFSUBEX 6-10

WAITLIST
IMFEXEC command 12-205

WAITSEC
special function 7-6

WTO
IMFEXEC command 12-208

WTOR
IMFEXEC command 12-210
BMC Software, Inc., Confidential and Proprietary Information

18 MAINVIEW AutoOPERATOR Advanced Automation Guide

END USER LICENSE AGREEMENT
NOTICE

BY OPENING THE PACKAGE, INSTALLING, PRESSING “AGREE” OR “YES” OR USING THE PRODUCT, THE ENTITY OR INDIVIDUAL
ENTERING INTO THIS AGREEMENT AGREES TO BE BOUND BY THE FOLLOWING TERMS. IF YOU DO NOT AGREE WITH ANY OF
THESE TERMS, DO NOT INSTALL OR USE THE PRODUCT, PROMPTLY RETURN THE PRODUCT TO BMC OR YOUR BMC RESELLER,
AND IF YOU ACQUIRED THE LICENSE WITHIN 30 DAYS OF THE DATE OF YOUR ORDER CONTACT BMC OR YOUR BMC RESELLER FOR
A REFUND OF LICENSE FEES PAID. IF YOU REJECT THIS AGREEMENT, YOU WILL NOT ACQUIRE ANY LICENSE TO USE THE
PRODUCT.

This Agreement (“Agreement”) is between the entity or individual entering into this Agreement (“You”) and BMC Software Distribution, Inc., a
Delaware corporation located at 2101 CityWest Blvd., Houston, Texas, 77042, USA or its affiliated local licensing entity (“BMC”). “You” includes you
and your Affiliates. “Affiliate” is defined as an entity which controls, is controlled by or shares common control with a party. IF MORE THAN ONE
LICENSE AGREEMENT COULD APPLY TO THE PRODUCT, THE FOLLOWING ORDER OF LICENSE AGREEMENT PRECEDENCE APPLIES:
(1) WEB BASED LICENSE AGREEMENT WITH BMC, (2) WRITTEN LICENSE AGREEMENT WITH BMC, (3) SHRINK-WRAP LICENSE
AGREEMENT WITH BMC PROVIDED WITH THE PRODUCT, AND (4)THIS ELECTRONIC LICENSE AGREEMENT WITH BMC. In addition to the
restrictions imposed under this Agreement, any other usage restrictions contained in the Product installation instructions or release notes shall
apply to Your use of the Product.

PRODUCT AND CAPACITY. “Software” means the object code version of the computer programs provided, via delivery or electronic
transmission, to You. Software includes computer files, enhancements, maintenance modifications, upgrades, updates, bug fixes, and error
corrections.

“Documentation” means all written or graphical material provided by BMC in any medium, including any technical specifications, relating to the
functionality or operation of the Software.

“Product” means the Software and Documentation.

“License Capacity” means the licensed capacity for the Software with the pricing and other license defining terms, including capacity restrictions,
such as tier limit, total allowed users, gigabyte limit, quantity of Software, and/or other capacity limitations regarding the Software. For licenses
based on the power of a computer, You agree to use BMC’s current computer classification scheme, which is available at http://www.bmc.com or
can be provided to You upon request.

ACCEPTANCE. The Product is deemed accepted by You, on the date that You received the Product from BMC.

LICENSE. Subject to the terms of this Agreement, as well as Your payment of applicable fees, BMC grants You a non-exclusive, non-transferable,
perpetual (unless a term license is provided on an order) license for each copy of the Software, up to the License Capacity, to do the following:

(a) install the Software on Your owned or leased hardware located at a facility owned or controlled by You in the country where You acquired the
license;

(b) operate the Software solely for processing Your own data in Your business operations; and

(c) make one copy of the Software for backup and archival purposes only (collectively a “License”).

If the Software is designed by BMC to permit you to modify such Software, then you agree to only use such modifications or new software
programs for Your internal purposes or otherwise consistent with the License. BMC grants You a license to use the Documentation solely for Your
internal use in Your operations.

LICENSE UPGRADES. You may expand the scope of the License Capacity only pursuant to a separate agreement with BMC for such expanded
usage and Your payment of applicable fees. There is no additional warranty period or free support period for license upgrades.

RESTRICTIONS: You agree to NOT:

(a) disassemble, reverse engineer, decompile or otherwise attempt to derive any Software from executable code;

(b) distribute or provide the Software to any third party (including without limitation, use in a service bureau, outsourcing environment, or
processing the data of third parties, or for rental, lease, or sublicense); or

(c) provide a third party with the results of any functional evaluation or benchmarking or performance tests, without BMC’s prior written approval,
unless prohibited by local law.

TRIAL LICENSE. If, as part of the ordering process, the Product is provided on a trial basis, then these terms apply: (i) this license consists solely
of a non-exclusive, non-transferable evaluation license to operate the Software for the period of time specified from BMC or, if not specified, a 30
day time period (“Trial Period”) only for evaluating whether You desire to acquire a capacity-based license to the Product for a fee; and (ii) Your
use of the Product is on an AS IS basis without any warranty, and BMC, ITS AFFILIATES AND RESELLERS, AND LICENSORS DISCLAIM ANY
AND ALL WARRANTIES (INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NON-INFRINGEMENT) AND HAVE NO LIABILITY WHATSOEVER RESULTING FROM THE USE OF THIS
PRODUCT UNDER THIS TRIAL LICENSE (“Trial License”). BMC may terminate for its convenience a Trial License upon notice to You. When
the Trial Period ends, Your right to use this Product automatically expires. If You want to continue Your use of the Product beyond the Trial Period,
contact BMC to acquire a capacity-based license to the Product for a fee.

TERMINATION. This Agreement shall immediately terminate if You breach any of its terms. Upon termination, for any reason, You must uninstall
the Software, and either certify the destruction of the Product or return it to BMC.

OWNERSHIP OF THE PRODUCT. BMC or its Affiliates or licensors retain all right, title and interest to and in the BMC Product and all intellectual
property, informational, industrial property and proprietary rights therein. BMC neither grants nor otherwise transfers any rights of ownership in the
BMC Product to You. Products are protected by applicable copyright, trade secret, and industrial and intellectual property laws. BMC reserves any
rights not expressly granted to You herein.

CONFIDENTIAL AND PROPRIETARY INFORMATION. The Products are and contain valuable confidential information of BMC (“Confidential
Information”). Confidential Information means non-public technical and non-technical information relating to the Products and Support, including,
without limitation, trade secret and proprietary information, and the structure and organization of the Software. You may not disclose the
Confidential Information to third parties. You agree to use all reasonable efforts to prevent the unauthorized use, copying, publication or
dissemination of the Product.

WARRANTY. Except for a Trial License, BMC warrants that the Software will perform in substantial accordance with the Documentation for a
period of one year from the date of the order. This warranty shall not apply to any problems caused by software or hardware not supplied by BMC
or to any misuse of the Software.

EXCLUSIVE REMEDY. BMC’s entire liability, and Your exclusive remedy, for any defect in the Software during the warranty period or breach of the
warranty above shall be limited to the following: BMC shall use reasonable efforts to remedy defects covered by the warranty or replace the
defective Software within a reasonable period of time, or if BMC cannot remedy or replace such defective copy of the Software, then BMC shall
refund the amount paid by You for the License for that Software. BMC's obligations in this section are conditioned upon Your providing BMC prompt
access to the affected Software and full cooperation in resolving the claim.

DISCLAIMER. EXCEPT FOR THE EXPRESS WARRANTIES ABOVE, THE PRODUCT IS PROVIDED “AS IS.” BMC, ITS AFFILIATES AND
LICENSORS SPECIFICALLY DISCLAIM ALL OTHER WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. BMC DOES NOT WARRANT THAT THE
OPERATION OF THE SOFTWARE WILL BE UNINTERRUPTED OR ERROR FREE, OR THAT ALL DEFECTS CAN BE CORRECTED.

DISCLAIMER OF DAMAGES. IN NO EVENT IS BMC, ITS AFFILIATES OR LICENSORS LIABLE FOR ANY SPECIAL, INDIRECT,
INCIDENTAL, PUNITIVE OR CONSEQUENTIAL DAMAGES RELATING TO OR ARISING OUT OF THIS AGREEMENT, SUPPORT, AND/OR
THE PRODUCT (INCLUDING, WITHOUT LIMITATION, LOST PROFITS, LOST COMPUTER USAGE TIME, AND DAMAGE OR LOSS OF USE
OF DATA), EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, AND IRRESPECTIVE OF ANY NEGLIGENCE OF BMC OR
WHETHER SUCH DAMAGES RESULT FROM A CLAIM ARISING UNDER TORT OR CONTRACT LAW.

LIMITS ON LIABILITY. BMC’S AGGREGATE LIABILITY FOR DAMAGES IS LIMITED TO THE AMOUNT PAID BY YOU FOR THE LICENSE TO
THE PRODUCT.

SUPPORT. If Your order includes support for the Software, then BMC agrees to provide support (24 hours a day/7 days a week) (“Support”). You
will be automatically re-enrolled in Support on an annual basis unless BMC receives notice of termination from You as provided below. There is a
free support period during the one year warranty period.

(a) Support Terms. BMC agrees to make commercially reasonable efforts to provide the following Support: (i) For malfunctions of supported
versions of the Software, BMC provides bug fixes, patches or workarounds in order to cause that copy of the Software to operate in substantial
conformity with its then-current operating specifications; and (ii) BMC provides new releases or versions, so long as such new releases or versions
are furnished by BMC to all other enrolled Support customers without additional charge. BMC may refuse to provide Support for any versions or
releases of the Software other than the most recent version or release of such Software made available by BMC. Either party may terminate Your
enrollment in Support upon providing notice to the other at least 30 days prior to the next applicable Support anniversary date. If You re-enroll in
Support, BMC may charge You a reinstatement fee of 1.5 times what You would have paid if You were enrolled in Support during that time period.

 (b) Fees. The annual fee for Support is 20% of the Software’s list price less the applicable discount or a flat capacity based annual fee. BMC may
change its prices for the Software and/or Support upon at least 30 days notice prior to Your support anniversary date.

VERIFICATION. If requested by BMC, You agree to deliver to BMC periodic written reports, whether generated manually or electronically, detailing
Your use of the Software in accordance with this Agreement, including, without limitation, the License Capacity. BMC may, at its expense, perform
an audit, at your facilities, of Your use of the Software to confirm Your compliance with the Agreement. If an audit reveals that You have underpaid
fees, You agree to pay such underpaid fees. If the underpaid fees exceed 5% of the fees paid, then You agree to also pay BMC’s reasonable costs
of conducting the audit.

EXPORT CONTROLS. You agree not to import, export, re-export, or transfer, directly or indirectly, any part of the Product or any underlying
information or technology except in full compliance with all United States, foreign and other applicable laws and regulations.

GOVERNING LAW. This Agreement is governed by the substantive laws in force, without regard to conflict of laws principles: (a) in the State of
New York, if you acquired the License in the United States, Puerto Rico, or any country in Central or South America; (b) in the Province of Ontario,
if you acquired the License in Canada (subsections (a) and (b) collectively referred to as the “Americas Region”); (c) in Singapore, if you acquired
the License in Japan, South Korea, Peoples Republic of China, Special Administrative Region of Hong Kong, Republic of China, Philippines,
Indonesia, Malaysia, Singapore, India, Australia, New Zealand, or Thailand (collectively, “Asia Pacific Region”); or (d) in the Netherlands, if you
acquired the License in any other country not described above. The United Nations Convention on Contracts for the International Sale of Goods is
specifically disclaimed in its entirety.

ARBITRATION. ANY DISPUTE BETWEEN YOU AND BMC ARISING OUT OF THIS AGREEMENT OR THE BREACH OR ALLEGED BREACH,
SHALL BE DETERMINED BY BINDING ARBITRATION CONDUCTED IN ENGLISH. IF THE DISPUTE IS INITIATED IN THE AMERICAS
REGION, THE ARBITRATION SHALL BE HELD IN NEW YORK, U.S.A., UNDER THE CURRENT COMMERCIAL OR INTERNATIONAL, AS
APPLICABLE, RULES OF THE AMERICAN ARBITRATION ASSOCIATION. IF THE DISPUTE IS INITIATED IN A COUNTRY IN THE ASIA
PACIFIC REGION, THE ARBITRATION SHALL BE HELD IN SINGAPORE, SINGAPORE UNDER THE CURRENT UNCITRAL ARBITRATION
RULES. IF THE DISPUTE IS INITIATED IN A COUNTRY OUTSIDE OF THE AMERICAS REGION OR ASIA PACIFIC REGION, THE
ARBITRATION SHALL BE HELD IN AMSTERDAM, NETHERLANDS UNDER THE CURRENT UNCITRAL ARBITRATION RULES. THE
COSTS OF THE ARBITRATION SHALL BE BORNE EQUALLY PENDING THE ARBITRATOR’S AWARD. THE AWARD RENDERED SHALL
BE FINAL AND BINDING UPON THE PARTIES AND SHALL NOT BE SUBJECT TO APPEAL TO ANY COURT, AND MAY BE ENFORCED IN
ANY COURT OF COMPETENT JURISDICTION. NOTHING IN THIS AGREEMENT SHALL BE DEEMED AS PREVENTING EITHER PARTY
FROM SEEKING INJUNCTIVE RELIEF FROM ANY COURT HAVING JURISDICTION OVER THE PARTIES AND THE SUBJECT MATTER OF

THE DISPUTE AS NECESSARY TO PROTECT EITHER PARTY’S CONFIDENTIAL INFORMATION, OWNERSHIP, OR ANY OTHER
PROPRIETARY RIGHTS. ALL ARBITRATION PROCEEDINGS SHALL BE CONDUCTED IN CONFIDENCE, AND THE PARTY PREVAILING IN
ARBITRATION SHALL BE ENTITLED TO RECOVER ITS REASONABLE ATTORNEYS’ FEES AND NECESSARY COSTS INCURRED
RELATED THERETO FROM THE OTHER PARTY.

U.S. GOVERNMENT RESTRICTED RIGHTS. The Software under this Agreement is “commercial computer software” as that term is described in
48 C.F.R. 252.227-7014(a)(1). If acquired by or on behalf of a civilian agency, the U.S. Government acquires this commercial computer software
and/or commercial computer software documentation subject to the terms of this Agreement as specified in 48 C.F.R. 12.212 (Computer Software)
and 12.211 (Technical Data) of the Federal Acquisition Regulations (“FAR”) and its successors. If acquired by or on behalf of any agency within
the Department of Defense (“DOD”), the U.S. Government acquires this commercial computer software and/or commercial computer software
documentation subject to the terms of this Agreement as specified in 48 C.F.R. 227.7202 of the DOD FAR Supplement and its successors.

MISCELLANEOUS TERMS. You agree to pay BMC all amounts owed no later than 30 days from the date of the applicable invoice, unless
otherwise provided on the order for the License to the Products. You will pay, or reimburse BMC, for taxes of any kind, including sales, use, duty,
tariffs, customs, withholding, property, value-added (VAT), and other similar federal, state or local taxes (other than taxes based on BMC’s net
income) imposed in connection with the Product and/or the Support. This Agreement constitutes the entire agreement between You and BMC and
supersedes any prior or contemporaneous negotiations or agreements, whether oral, written or displayed electronically, concerning the Product
and related subject matter. No modification or waiver of any provision hereof will be effective unless made in a writing signed by both BMC and You.
You may not assign or transfer this Agreement or a License to a third party without BMC’s prior written consent. Should any provision of this
Agreement be invalid or unenforceable, the remainder of the provisions will remain in effect. The parties have agreed that this Agreement and the
documents related thereto be drawn up in the English language. Les parties exigent que la présente convention ainsi que les documents qui s’y
rattachent soient rédigés en anglais.

SW Click EULA 071102

Notes

�����
�����
�����
�����

24847

	Contents
	Figures
	Tables
	About This Book
	Chapter�1 Introduction to Using AutoOPERATOR and EXECs to Automate Your Environment
	Overview
	Choosing the EXEC Language: REXX or CLIST
	Invoking AutoOPERATOR EXECs
	Passing Information to REXX EXECs
	Controlling EXEC Execution
	Using Variables in AutoOPERATOR EXECs

	Chapter�2 Using REXX Conventions and Syntax in AutoOPERATOR REXX EXECs
	Using Expressions and Operators in REXX EXECs
	Using Control Statements in REXX EXECs
	Using Assignment Statements in REXX EXECs
	Using Conditional Statements in REXX EXECs
	Using Built-in Functions in REXX EXECs
	Using TSO/E Functions for REXX EXECs
	Using TSO/E REXX Commands in REXX EXECs
	Restrictions in REXX EXECs

	Chapter�3 Passing Parameters to REXX EXECs in AutoOPERATOR
	Understanding the Four Components of a REXX EXEC
	Defining the Language
	Passing Data
	Documenting REXX EXECs
	Writing the Logic Section

	Describing AutoOPERATOR REXX EXECs
	Rule-Initiated REXX EXECs
	Potential Use
	Parameters Passed to the EXEC
	Example
	Describing the Example

	ALERT-Initiated REXX EXECs
	Potential Use
	Parameters Passed to the EXEC
	Example 1: ALERT-Initiated EXEC without Optional Parameters
	Describing the Example
	Example 2: ALERT-Initiated EXEC with Optional Parameters
	Describing the Example

	User-Initiated REXX EXECs
	Potential Use
	Parameters Passed to the EXEC
	Example
	Describing the Example

	Time-Initiated REXX EXECs
	Potential Use
	Parameters Passed to the EXEC
	Example
	Describing the Example

	EXEC-Initiated REXX EXECs
	Potential Use
	Parameters Passed to the EXEC
	Example
	Describing the Example

	Externally Initiated REXX EXECs
	Potential Use
	Parameters Passed to the EXEC
	Example
	Describing the Example

	End-of-Memory-Initiated REXX EXEC
	Potential Use
	Parameters Passed to the EXEC
	Example

	Chapter�4 Using Variables in REXX EXECs
	Overview
	Using a TSO Variable Pool
	TSO Variables Supplied by AutoOPERATOR
	TSO Modifiable Control Variables (REXX EXECs)
	TSO Modifiable Control Variables (CLIST EXECs)
	TSO Non-Modifiable Control Variables (REXX EXECs)
	TSO Non-Modifiable Control Variables (CLIST EXECs)

	Using LOCAL Variables and Pools
	Using SHARED Variables and Pools
	Serializing Variables
	AutoOPERATOR-Supplied SHARED Variables

	Using the PROFILE Pool
	Serializing Variables

	Saving Data in a Variable Pool
	Potential Use
	Describing the Example
	Example

	Retrieving Data from a Variable Pool
	Potential Use
	Describing the Example
	Example

	Sharing Variables while Multi-Threading EXECs
	Potential Use
	Describing the Example
	Example

	Rule-Initiated EXECs Initiated by MVS Multi-Line or Multi-Segment Messages
	Potential Use
	Describing the Example
	Example

	Chapter�5 Controlling EXEC Execution
	Scheduling EXECs
	Defining Threads
	Scheduling EXECs to the Normal Queue
	Scheduling EXECs to the Priority Queue
	Multi-Threading EXECs to the Normal or Priority Queue

	Invoking EXECs Synchronously with IMFEXEC SELECT(EXEC) WAIT(YES)
	Implementing an EXEC
	Controlling EXEC Execution
	Setting Time and CPU Limits for EXECs
	Displaying EXEC Execution Status
	Canceling, Stopping, and Starting EXEC Execution

	Analyzing EXEC Performance with the EXEC Management Application
	Using the SORT Command in the EXEC Management Application

	Writing EXECs that Display CPU Consumption

	Chapter�6 Using Advanced Techniques with AutoOPERATOR EXECs
	Overview
	Scheduling Messages and EXECs across BBI-SS PASs
	Examples

	Determining the Origin of a Command or EXEC
	Example - Determining the Origin of a User-Initiated EXEC

	Invoking REXX EXECs from Outside of AutoOPERATOR with IMFSUBEX
	Determining Return Codes from IMFSUBEX
	Submission from a Job Step
	Submission from a TSO Session
	Submission from within Another Program

	Testing EXECs
	Testing EXECs with IMFEXEC CNTL NOCMD Statements
	Testing an EXEC with REXX Statement TRACE R
	Testing EXECs with TSO CLIST Statement CONTROL CONLIST SYMLIST
	Testing EXECs with SHARED Variables
	Testing EXECs without Issuing WTOs

	REXX EXEC Considerations
	Minimizing EXEC Processing Time
	Using VLF to Improve Performance

	Chapter�7 Accessing DB2 from AutoOPERATOR
	Accessing DB2 from REXX EXECs with RxD2/LINK
	RxD2/LINK Common Functions for REXX EXECs
	RxD2/LINK Special Functions for REXX EXECs

	Chapter�8 Interacting with VTAM Applications with OSPI
	Overview
	When to Use OSPI
	How to Use OSPI
	Customization Required to Use OSPI
	OSPI Sessions
	Establishing a Session
	Exchanging Data
	Terminating a Session

	OSPI Scripting Application
	Accessing the OSPI Scripting Application
	OSPI Script Development Panel
	Interacting with the Application
	Receive Complete Detection
	Retrieving Screen Data into Variables
	Terminating the Application

	Customizing OSPI EXECs
	OSPI Control Variables
	Disconnect/Reconnect Feature
	Establishing Multiple Sessions
	Using Passwords in OSPI EXECs

	OSPI Debugging Facilities
	Return Codes
	Error Messages
	OSPI Control Variables
	OSPISNAP
	OSPI Session Termination Panel

	Chapter�9 Performing Automation Using AOAnywhere
	Overview
	Sysplex Support

	Why Use AOAnywhere
	Installation Requirements
	API Implementation under REXX and CLIST
	Differences between IMFEXEC and AOEXEC Parameter Syntax

	Implementing the AOAnywhere Batch Interface: AOSUBX
	Why Use AOSUBX

	AOEXEC Commands
	General Coding Conventions
	Using Variable Names
	Reading Return Codes
	Understanding Command Statement Syntax

	AOEXEC ALERT
	Return Codes for FUNCTION Keywords
	TSO Variables Returned from the READQ Parameter
	TSO Variables Returned from COUNT
	TSO Variables Returned from LISTQ

	AOEXEC MSG
	AOEXEC NOTIFY
	AOEXEC SELECT
	AOEXEC SYSINFO
	AOEXEC VDEL
	AOEXEC VGET
	AOEXEC VLST
	AOEXEC VPUT
	AOEXEC VDELL
	AOEXEC VGETL
	AOEXEC VLSTL
	AOEXEC VPUTL

	Chapter�10 Accessing Array Data with AutoOPERATOR EXECs
	Overview
	When Are Arrays Useful

	IMFEXEC ARRAY Commands
	General Coding Conventions
	Using Variable Names
	Reading Condition Codes

	ARRAY CONNECT
	ARRAY CREATE
	ARRAY DELETE
	ARRAY DISC
	ARRAY FIND
	ARRAY GET
	ARRAY INFO
	ARRAY INSERT
	ARRAY LIST
	ARRAY PUT
	ARRAY SAVE
	ARRAY SET
	ARRAY SETVIEW
	ARRAY SORT

	Chapter�11 Using the MAINVIEW API
	Overview
	What Is the MAINVIEW API
	Customizing MAINVIEW Views and Connecting BBI-SS PAS to a CAS

	Using the IMFEXEC MAINVIEW Commands
	IMFEXEC MAINVIEW CONNECT
	IMFEXEC MAINVIEW CONTEXT
	IMFEXEC MAINVIEW VIEW
	IMFEXEC MAINVIEW GETDATA

	General Coding Conventions
	Using Variable Names
	Reading Condition Codes

	MAINVIEW CONNECT
	MAINVIEW CONTEXT
	MAINVIEW GETDATA
	MAINVIEW RELEASE
	MAINVIEW TRACE
	MAINVIEW VIEW
	Sample Program

	Chapter�12 Using the IMFEXEC Statements
	General Coding Conventions
	REXX Coding
	Using Quotation Marks
	Using Variable Names
	Reading Condition Codes

	ALERT
	FUNCTION Keywords
	TSO Variables Returned from the READQ Parameter
	TSO Variables Returned from COUNT
	TSO Variables Returned from LISTQ

	BKPT
	CHAP
	CICS
	Condition Codes
	CICS Command Parameters
	CICS ACQUIRE
	CICS ALLOC
	CICS ALTER
	CICS ALTERVS
	CICS CEMT
	CICS CHAP
	CICS CICSKEY
	CICS CLOSE
	CICS CONN
	CICS DISABLE
	CICS DROP
	CICS DUMPDB
	CICS ENABLE
	CICS FREE
	CICS INSERVE
	CICS ISOLATE
	CICS KILL
	CICS LOAD
	CICS NEWCOPY
	CICS OPEN
	CICS OUTSERVE
	CICS PURGE
	CICS QUERY
	CICS RECOVERDB
	CICS RELEASE
	CICS SPURGE
	CICS STARTDB
	CICS STOPDB
	CICSTRAN

	CMD
	CMD (Issue BBI Command without Response)
	CMD (Issue BBI Command with Response)
	CMD (Issue MVS Commands)
	CMD (Issue IMS Command without Response)
	CMD (Issue IMS Command with Response)

	CNTL
	DOM
	EXIT
	HB
	IMFC
	IMFC SET PRG=CALLX | ALL
	IMFC SET REQ=CALLX
	IMSTRAN
	JES3CMD
	JESALLOC
	JESSUBM
	LOGOFF
	LOGON
	MSG
	NOTIFY
	POST
	RECEIVE
	RES
	SCAN
	Using Parameters

	SELECT
	Using Other Programming Languages
	Understanding Completion Codes for EXEC-Initiated EXECs with WAIT(YES) and User-Written Programs

	SEND
	SESSINF
	SETTGT
	SHARE
	STDTIME
	SUBMIT
	TAILOR
	Condition Codes
	IMFEXEC TAILOR Processing
	Variable Substitution
	Examples of Variable Substitution

	TRANSMIT
	TYPE
	VCKP
	VDCL
	VDEL
	VDELL
	VDEQ
	VENQ
	VGET
	VGETL
	VLST
	VLSTL
	VPUT
	VPUTL
	WAIT
	WAITLIST
	WTO
	WTOR

	Chapter�13 Testing and Debugging EXECs Interactively
	Why Use AutoOPERATOR EXECs
	What AutoOPERATOR EXECs Are
	What the EXEC Testing Facility Provides
	Overview
	What Breakpoints Are
	Division of Breakpoints
	How to Use Variables
	How to Use the EXEC Testing Facility with OSPI EXECs
	How to Use the IMFEXEC BKPT Statement
	How to Trace the Execution of the EXEC
	What to Set Up before Using the EXEC Testing Facility

	Accessing the EXEC Testing Facility
	Displaying Interpreted Source Statements
	Tracing Interpreted Source Statements
	Setting Conditional Breakpoints
	Displaying Variables
	Creating and Modifying Variables
	Testing OSPI Sessions

	Chapter�14 Using the AutoOPERATOR-Supplied Utility EXECs
	Distributed Utility EXECs
	SYSPROG Utility EXECs

	How to Resolve Compound SYSPROG Variables
	@STATASK: Start Tasks
	CANEXEC: Cancel Delvars
	DELVARS: Delete Variables
	MUT001C: Issue $E, $P, and $C Commands
	SUBMIT: Find Subsystem Handling Job Submissions
	SUBMITOR: Submit Jobs on the Target Subsystem
	RASM: Auxiliary Storage Manager Information
	RCPU: CPU Usage Information
	RCSS: Common Storage Usage Information
	RENQ: SYSPROG ENQUEUE Command
	RIO: System Input/Output Information
	RMDE: Device Monitoring
	RMON: Address Space Monitoring
	RMPA: Channel Path Monitoring
	RMTP: Monitor Pending Mounts
	RPAG: System Wide Paging Information
	RPRO: Monitor Progress of an Address Space
	RREP: Retrieve WTOR IDs
	RREPRX: Retrieve WTOR IDs
	RRES: Retrieve Outstanding Reserves
	RRSM: Real Storage Management Information
	RSPA: Retrieve DASD Space Information
	RSTA: Retrieve Status of an Address Space
	RSYS: System Dump Data Sets Information
	RTPI: Teleprocessing Input/Output Information
	RTSU: Information about TSO Users
	@TIMER: Interface to Timer Queues
	JES2DI: Retrieve Initiator Information
	JES2DQ: Retrieve Execution Queue Information
	CNVSECS: Convert HH:MM:SS Format to Seconds
	CNVTIME: Convert Time in Seconds to HH:MM:SS
	QAODUMP: Submits Commands to Obtain a Console Dump

	Appendix�A SYSPROG EXEC Cross- Reference
	Appendix�B Using CLIST Conventions and Syntax in AutoOPERATOR CLIST EXECs
	Using Expressions and Operators in CLIST EXECs
	Using Control Statements in CLIST EXECs
	Using Assignment Statements in CLIST EXECs
	Using Conditional Statements in CLIST EXECs
	Using Built-in Functions in CLIST EXECs
	TSO Command Restrictions for CLIST EXECs

	Appendix�C Passing Parameters to CLIST EXECs in AutoOPERATOR
	Understanding the Four Components of a CLIST EXEC
	Defining the Language
	Passing Data
	Documenting CLIST EXECs
	Writing the Logic Section

	Describing AutoOPERATOR CLIST EXECs
	Rule-Initiated CLIST EXECs
	Potential Use
	Parameters Passed to the EXEC
	Example
	Describing the Example

	ALERT-Initiated CLIST EXECs
	Potential Use
	Parameters Passed to the EXEC
	Example 1: ALERT-Initiated EXEC without Optional Parameters
	Describing the Example
	Example 2: ALERT-Initiated EXEC with Optional Parameters
	Describing the Example

	User-Initiated CLIST EXECs
	Potential Use
	Parameters Passed to the EXEC
	Example
	Describing the Example

	Time-Initiated CLIST EXECs
	Potential Use
	Parameters Passed to the EXEC
	Example
	Describing the Example

	EXEC-Initiated CLIST EXECs
	Potential Use
	Parameters Passed to the EXEC
	Example
	Describing the Example

	Externally Initiated CLIST EXECs
	Potential Use
	Parameters Passed to the EXEC
	Example
	Describing the Example

	End-of-Memory Initiated CLIST EXEC
	Potential Use
	Parameters Passed to the EXEC
	Example
	Describing the Example

	Glossary
	Index

